metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_sgd_001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.26666666666666666
hushem_1x_deit_tiny_sgd_001_fold1
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3946
- Accuracy: 0.2667
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.6081 | 0.2889 |
1.6517 | 2.0 | 12 | 1.5532 | 0.3333 |
1.6517 | 3.0 | 18 | 1.5183 | 0.3111 |
1.5073 | 4.0 | 24 | 1.4941 | 0.2 |
1.4569 | 5.0 | 30 | 1.4762 | 0.1333 |
1.4569 | 6.0 | 36 | 1.4655 | 0.1333 |
1.377 | 7.0 | 42 | 1.4570 | 0.1333 |
1.377 | 8.0 | 48 | 1.4508 | 0.1333 |
1.3495 | 9.0 | 54 | 1.4443 | 0.1333 |
1.3234 | 10.0 | 60 | 1.4390 | 0.1333 |
1.3234 | 11.0 | 66 | 1.4339 | 0.1778 |
1.2813 | 12.0 | 72 | 1.4301 | 0.1778 |
1.2813 | 13.0 | 78 | 1.4257 | 0.2 |
1.3124 | 14.0 | 84 | 1.4223 | 0.2 |
1.2528 | 15.0 | 90 | 1.4195 | 0.2 |
1.2528 | 16.0 | 96 | 1.4170 | 0.2222 |
1.2252 | 17.0 | 102 | 1.4152 | 0.2 |
1.2252 | 18.0 | 108 | 1.4125 | 0.2222 |
1.2441 | 19.0 | 114 | 1.4108 | 0.2 |
1.1872 | 20.0 | 120 | 1.4088 | 0.2 |
1.1872 | 21.0 | 126 | 1.4068 | 0.2 |
1.1818 | 22.0 | 132 | 1.4052 | 0.2222 |
1.1818 | 23.0 | 138 | 1.4041 | 0.2 |
1.1835 | 24.0 | 144 | 1.4032 | 0.2222 |
1.1551 | 25.0 | 150 | 1.4021 | 0.2222 |
1.1551 | 26.0 | 156 | 1.4013 | 0.2222 |
1.1564 | 27.0 | 162 | 1.4008 | 0.2 |
1.1564 | 28.0 | 168 | 1.3999 | 0.2222 |
1.1662 | 29.0 | 174 | 1.3989 | 0.2222 |
1.116 | 30.0 | 180 | 1.3985 | 0.2222 |
1.116 | 31.0 | 186 | 1.3976 | 0.2444 |
1.153 | 32.0 | 192 | 1.3972 | 0.2444 |
1.153 | 33.0 | 198 | 1.3964 | 0.2444 |
1.1437 | 34.0 | 204 | 1.3958 | 0.2444 |
1.1259 | 35.0 | 210 | 1.3954 | 0.2444 |
1.1259 | 36.0 | 216 | 1.3954 | 0.2667 |
1.1125 | 37.0 | 222 | 1.3951 | 0.2667 |
1.1125 | 38.0 | 228 | 1.3951 | 0.2667 |
1.0816 | 39.0 | 234 | 1.3948 | 0.2667 |
1.1207 | 40.0 | 240 | 1.3948 | 0.2667 |
1.1207 | 41.0 | 246 | 1.3947 | 0.2667 |
1.1291 | 42.0 | 252 | 1.3946 | 0.2667 |
1.1291 | 43.0 | 258 | 1.3946 | 0.2667 |
1.1338 | 44.0 | 264 | 1.3946 | 0.2667 |
1.1093 | 45.0 | 270 | 1.3946 | 0.2667 |
1.1093 | 46.0 | 276 | 1.3946 | 0.2667 |
1.1123 | 47.0 | 282 | 1.3946 | 0.2667 |
1.1123 | 48.0 | 288 | 1.3946 | 0.2667 |
1.096 | 49.0 | 294 | 1.3946 | 0.2667 |
1.1328 | 50.0 | 300 | 1.3946 | 0.2667 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1