metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_sgd_001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.17777777777777778
hushem_1x_deit_tiny_sgd_001_fold2
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.4913
- Accuracy: 0.1778
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.6461 | 0.2222 |
1.647 | 2.0 | 12 | 1.5827 | 0.2 |
1.647 | 3.0 | 18 | 1.5400 | 0.2 |
1.5111 | 4.0 | 24 | 1.5101 | 0.2 |
1.4472 | 5.0 | 30 | 1.4855 | 0.1778 |
1.4472 | 6.0 | 36 | 1.4711 | 0.1778 |
1.3765 | 7.0 | 42 | 1.4618 | 0.2 |
1.3765 | 8.0 | 48 | 1.4555 | 0.2 |
1.3363 | 9.0 | 54 | 1.4523 | 0.2222 |
1.3131 | 10.0 | 60 | 1.4505 | 0.2 |
1.3131 | 11.0 | 66 | 1.4495 | 0.2 |
1.2743 | 12.0 | 72 | 1.4504 | 0.2 |
1.2743 | 13.0 | 78 | 1.4505 | 0.2 |
1.2923 | 14.0 | 84 | 1.4516 | 0.2 |
1.2475 | 15.0 | 90 | 1.4529 | 0.2 |
1.2475 | 16.0 | 96 | 1.4558 | 0.2 |
1.2052 | 17.0 | 102 | 1.4591 | 0.1778 |
1.2052 | 18.0 | 108 | 1.4603 | 0.1778 |
1.2375 | 19.0 | 114 | 1.4628 | 0.1778 |
1.1665 | 20.0 | 120 | 1.4654 | 0.1778 |
1.1665 | 21.0 | 126 | 1.4668 | 0.1778 |
1.1508 | 22.0 | 132 | 1.4681 | 0.1778 |
1.1508 | 23.0 | 138 | 1.4710 | 0.1778 |
1.1615 | 24.0 | 144 | 1.4735 | 0.1778 |
1.1372 | 25.0 | 150 | 1.4742 | 0.1778 |
1.1372 | 26.0 | 156 | 1.4775 | 0.1778 |
1.1389 | 27.0 | 162 | 1.4787 | 0.1778 |
1.1389 | 28.0 | 168 | 1.4813 | 0.1778 |
1.1191 | 29.0 | 174 | 1.4821 | 0.1778 |
1.106 | 30.0 | 180 | 1.4844 | 0.1778 |
1.106 | 31.0 | 186 | 1.4853 | 0.1778 |
1.1156 | 32.0 | 192 | 1.4867 | 0.1778 |
1.1156 | 33.0 | 198 | 1.4872 | 0.1778 |
1.127 | 34.0 | 204 | 1.4879 | 0.1778 |
1.1055 | 35.0 | 210 | 1.4887 | 0.1778 |
1.1055 | 36.0 | 216 | 1.4895 | 0.1778 |
1.089 | 37.0 | 222 | 1.4902 | 0.1778 |
1.089 | 38.0 | 228 | 1.4907 | 0.1778 |
1.0605 | 39.0 | 234 | 1.4911 | 0.1778 |
1.0925 | 40.0 | 240 | 1.4913 | 0.1778 |
1.0925 | 41.0 | 246 | 1.4913 | 0.1778 |
1.1025 | 42.0 | 252 | 1.4913 | 0.1778 |
1.1025 | 43.0 | 258 | 1.4913 | 0.1778 |
1.1085 | 44.0 | 264 | 1.4913 | 0.1778 |
1.0909 | 45.0 | 270 | 1.4913 | 0.1778 |
1.0909 | 46.0 | 276 | 1.4913 | 0.1778 |
1.0889 | 47.0 | 282 | 1.4913 | 0.1778 |
1.0889 | 48.0 | 288 | 1.4913 | 0.1778 |
1.0611 | 49.0 | 294 | 1.4913 | 0.1778 |
1.1045 | 50.0 | 300 | 1.4913 | 0.1778 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1