hkivancoral's picture
End of training
fb4a98d
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_sgd_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.17777777777777778

hushem_1x_deit_tiny_sgd_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4913
  • Accuracy: 0.1778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.6461 0.2222
1.647 2.0 12 1.5827 0.2
1.647 3.0 18 1.5400 0.2
1.5111 4.0 24 1.5101 0.2
1.4472 5.0 30 1.4855 0.1778
1.4472 6.0 36 1.4711 0.1778
1.3765 7.0 42 1.4618 0.2
1.3765 8.0 48 1.4555 0.2
1.3363 9.0 54 1.4523 0.2222
1.3131 10.0 60 1.4505 0.2
1.3131 11.0 66 1.4495 0.2
1.2743 12.0 72 1.4504 0.2
1.2743 13.0 78 1.4505 0.2
1.2923 14.0 84 1.4516 0.2
1.2475 15.0 90 1.4529 0.2
1.2475 16.0 96 1.4558 0.2
1.2052 17.0 102 1.4591 0.1778
1.2052 18.0 108 1.4603 0.1778
1.2375 19.0 114 1.4628 0.1778
1.1665 20.0 120 1.4654 0.1778
1.1665 21.0 126 1.4668 0.1778
1.1508 22.0 132 1.4681 0.1778
1.1508 23.0 138 1.4710 0.1778
1.1615 24.0 144 1.4735 0.1778
1.1372 25.0 150 1.4742 0.1778
1.1372 26.0 156 1.4775 0.1778
1.1389 27.0 162 1.4787 0.1778
1.1389 28.0 168 1.4813 0.1778
1.1191 29.0 174 1.4821 0.1778
1.106 30.0 180 1.4844 0.1778
1.106 31.0 186 1.4853 0.1778
1.1156 32.0 192 1.4867 0.1778
1.1156 33.0 198 1.4872 0.1778
1.127 34.0 204 1.4879 0.1778
1.1055 35.0 210 1.4887 0.1778
1.1055 36.0 216 1.4895 0.1778
1.089 37.0 222 1.4902 0.1778
1.089 38.0 228 1.4907 0.1778
1.0605 39.0 234 1.4911 0.1778
1.0925 40.0 240 1.4913 0.1778
1.0925 41.0 246 1.4913 0.1778
1.1025 42.0 252 1.4913 0.1778
1.1025 43.0 258 1.4913 0.1778
1.1085 44.0 264 1.4913 0.1778
1.0909 45.0 270 1.4913 0.1778
1.0909 46.0 276 1.4913 0.1778
1.0889 47.0 282 1.4913 0.1778
1.0889 48.0 288 1.4913 0.1778
1.0611 49.0 294 1.4913 0.1778
1.1045 50.0 300 1.4913 0.1778

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1