hkivancoral's picture
End of training
e13dfcc
|
raw
history blame
4.88 kB
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_beit_large_adamax_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7333333333333333

hushem_40x_beit_large_adamax_001_fold1

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2476
  • Accuracy: 0.7333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3238 1.0 215 0.6915 0.7333
0.1477 2.0 430 1.2081 0.6444
0.0434 3.0 645 1.8202 0.6444
0.0459 4.0 860 1.9604 0.6222
0.0376 5.0 1075 0.7965 0.7778
0.0151 6.0 1290 1.6449 0.7111
0.0084 7.0 1505 2.7172 0.6222
0.0085 8.0 1720 2.4588 0.6667
0.0105 9.0 1935 3.0173 0.5333
0.0465 10.0 2150 1.5242 0.7778
0.0056 11.0 2365 2.2494 0.7333
0.0106 12.0 2580 2.3865 0.6889
0.0614 13.0 2795 1.3048 0.7778
0.0068 14.0 3010 2.7128 0.6889
0.0 15.0 3225 2.3042 0.7778
0.0001 16.0 3440 2.6333 0.7333
0.0483 17.0 3655 2.9792 0.7111
0.0 18.0 3870 2.6692 0.7111
0.0 19.0 4085 2.7990 0.7556
0.0 20.0 4300 2.7968 0.7333
0.0 21.0 4515 2.8289 0.7333
0.0 22.0 4730 2.8734 0.7333
0.0 23.0 4945 2.7220 0.7556
0.0742 24.0 5160 2.8716 0.7111
0.0011 25.0 5375 2.8927 0.7333
0.0 26.0 5590 2.8101 0.7333
0.0 27.0 5805 2.9619 0.7111
0.0 28.0 6020 3.0313 0.7111
0.0 29.0 6235 3.1395 0.7111
0.0 30.0 6450 3.4589 0.7111
0.0 31.0 6665 3.5502 0.6889
0.0 32.0 6880 3.7038 0.6667
0.0 33.0 7095 2.9949 0.7111
0.0 34.0 7310 3.0364 0.7111
0.0 35.0 7525 3.1096 0.7111
0.0 36.0 7740 3.1633 0.7333
0.0 37.0 7955 3.1868 0.7333
0.0 38.0 8170 3.2061 0.7333
0.0 39.0 8385 3.2444 0.7333
0.0 40.0 8600 3.2660 0.7333
0.0 41.0 8815 3.2861 0.7333
0.0 42.0 9030 3.3090 0.7333
0.0 43.0 9245 3.3340 0.7333
0.0 44.0 9460 3.3547 0.7333
0.0 45.0 9675 3.3742 0.7333
0.0 46.0 9890 3.3879 0.7333
0.0 47.0 10105 3.4047 0.7333
0.0 48.0 10320 3.2184 0.7333
0.0 49.0 10535 3.2219 0.7333
0.0 50.0 10750 3.2476 0.7333

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2