hkivancoral's picture
End of training
40d7b39
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_small_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7333333333333333

hushem_40x_deit_small_adamax_001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2920
  • Accuracy: 0.7333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1775 1.0 215 1.6855 0.7111
0.1537 2.0 430 1.3524 0.7111
0.0687 3.0 645 2.1272 0.7333
0.0127 4.0 860 1.6443 0.7778
0.1338 5.0 1075 1.6931 0.7111
0.0106 6.0 1290 2.4757 0.6667
0.049 7.0 1505 2.6204 0.6889
0.0012 8.0 1720 1.8192 0.7333
0.0005 9.0 1935 1.7811 0.7556
0.0005 10.0 2150 2.2694 0.6889
0.0153 11.0 2365 1.6459 0.7333
0.0005 12.0 2580 1.8151 0.7778
0.0072 13.0 2795 1.9954 0.7556
0.0 14.0 3010 2.3490 0.7778
0.0073 15.0 3225 2.3310 0.7556
0.0002 16.0 3440 2.4489 0.6667
0.0001 17.0 3655 2.8003 0.6222
0.0 18.0 3870 2.6717 0.7333
0.0 19.0 4085 2.6848 0.7333
0.0 20.0 4300 2.6999 0.7333
0.0 21.0 4515 2.7166 0.7333
0.0 22.0 4730 2.7339 0.7333
0.0 23.0 4945 2.7519 0.7333
0.0 24.0 5160 2.7709 0.7333
0.0 25.0 5375 2.7907 0.7333
0.0 26.0 5590 2.8115 0.7333
0.0 27.0 5805 2.8327 0.7333
0.0 28.0 6020 2.8548 0.7333
0.0 29.0 6235 2.8773 0.7333
0.0 30.0 6450 2.9001 0.7333
0.0 31.0 6665 2.9234 0.7333
0.0 32.0 6880 2.9473 0.7333
0.0 33.0 7095 2.9712 0.7333
0.0 34.0 7310 2.9955 0.7333
0.0 35.0 7525 3.0198 0.7333
0.0 36.0 7740 3.0443 0.7333
0.0 37.0 7955 3.0682 0.7333
0.0 38.0 8170 3.0917 0.7333
0.0 39.0 8385 3.1162 0.7333
0.0 40.0 8600 3.1397 0.7333
0.0 41.0 8815 3.1619 0.7333
0.0 42.0 9030 3.1849 0.7333
0.0 43.0 9245 3.2057 0.7333
0.0 44.0 9460 3.2253 0.7333
0.0 45.0 9675 3.2434 0.7333
0.0 46.0 9890 3.2592 0.7333
0.0 47.0 10105 3.2727 0.7333
0.0 48.0 10320 3.2833 0.7333
0.0 49.0 10535 3.2902 0.7333
0.0 50.0 10750 3.2920 0.7333

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2