hkivancoral's picture
End of training
b4ae685
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_small_rms_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4222222222222222

hushem_40x_deit_small_rms_001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 7.2597
  • Accuracy: 0.4222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3825 1.0 215 1.4688 0.2667
1.3534 2.0 430 1.4553 0.3778
0.9498 3.0 645 1.8460 0.3333
0.7874 4.0 860 1.0992 0.4444
0.6519 5.0 1075 1.5864 0.4222
0.6238 6.0 1290 1.5678 0.4444
0.6712 7.0 1505 1.5837 0.3778
0.6234 8.0 1720 1.4844 0.3778
0.6842 9.0 1935 1.4360 0.4
0.5244 10.0 2150 1.9225 0.3778
0.5422 11.0 2365 1.4512 0.4667
0.4482 12.0 2580 2.2789 0.3556
0.5899 13.0 2795 1.6124 0.4222
0.4227 14.0 3010 1.8210 0.4444
0.4862 15.0 3225 1.4215 0.4667
0.4615 16.0 3440 2.1496 0.3778
0.6895 17.0 3655 1.7698 0.4667
0.3741 18.0 3870 2.6905 0.3556
0.3762 19.0 4085 2.4546 0.4222
0.3383 20.0 4300 2.0176 0.3778
0.3622 21.0 4515 2.9706 0.4
0.3284 22.0 4730 2.9396 0.4
0.2403 23.0 4945 2.3459 0.4889
0.345 24.0 5160 3.1195 0.4222
0.3045 25.0 5375 2.4187 0.4667
0.2936 26.0 5590 2.9167 0.3556
0.249 27.0 5805 2.5521 0.4667
0.2161 28.0 6020 3.7842 0.3778
0.2382 29.0 6235 3.0584 0.4
0.1225 30.0 6450 4.4557 0.4
0.2075 31.0 6665 4.7131 0.3111
0.1575 32.0 6880 3.8714 0.3556
0.1516 33.0 7095 4.5510 0.4
0.1231 34.0 7310 5.0636 0.3778
0.0943 35.0 7525 4.2212 0.4
0.0741 36.0 7740 4.4947 0.4
0.0582 37.0 7955 4.8808 0.4222
0.0412 38.0 8170 5.2254 0.3778
0.0508 39.0 8385 5.2558 0.3556
0.0566 40.0 8600 5.9529 0.3556
0.0397 41.0 8815 5.9087 0.3333
0.0462 42.0 9030 6.2634 0.4444
0.0245 43.0 9245 6.0294 0.4222
0.0398 44.0 9460 6.9015 0.4222
0.0182 45.0 9675 5.5112 0.4667
0.0162 46.0 9890 6.0476 0.4889
0.0028 47.0 10105 6.5416 0.4667
0.0087 48.0 10320 6.8964 0.4444
0.0011 49.0 10535 7.0908 0.4222
0.0007 50.0 10750 7.2597 0.4222

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2