hkivancoral's picture
End of training
0bd6186
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_small_sgd_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.32558139534883723

hushem_40x_deit_small_sgd_00001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3703
  • Accuracy: 0.3256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8914 1.0 217 1.5805 0.2558
2.0178 2.0 434 1.5654 0.2558
2.0179 3.0 651 1.5510 0.2558
1.8888 4.0 868 1.5374 0.2558
1.872 5.0 1085 1.5245 0.2558
1.7831 6.0 1302 1.5124 0.2558
1.836 7.0 1519 1.5009 0.2558
1.8178 8.0 1736 1.4901 0.2558
1.7694 9.0 1953 1.4801 0.2326
1.7678 10.0 2170 1.4706 0.2326
1.659 11.0 2387 1.4618 0.2326
1.6239 12.0 2604 1.4536 0.2558
1.6882 13.0 2821 1.4460 0.2558
1.6748 14.0 3038 1.4391 0.2558
1.6892 15.0 3255 1.4327 0.2791
1.725 16.0 3472 1.4268 0.2791
1.6371 17.0 3689 1.4214 0.2791
1.6193 18.0 3906 1.4164 0.3256
1.6512 19.0 4123 1.4119 0.3256
1.6188 20.0 4340 1.4078 0.3256
1.643 21.0 4557 1.4041 0.3256
1.5803 22.0 4774 1.4006 0.3256
1.592 23.0 4991 1.3975 0.3256
1.5987 24.0 5208 1.3946 0.3256
1.566 25.0 5425 1.3921 0.3488
1.5574 26.0 5642 1.3897 0.3488
1.4978 27.0 5859 1.3876 0.3488
1.524 28.0 6076 1.3857 0.3488
1.5682 29.0 6293 1.3839 0.3488
1.5042 30.0 6510 1.3823 0.3488
1.5589 31.0 6727 1.3808 0.3023
1.5347 32.0 6944 1.3795 0.3023
1.5403 33.0 7161 1.3783 0.3023
1.5548 34.0 7378 1.3772 0.3023
1.5321 35.0 7595 1.3762 0.3023
1.5015 36.0 7812 1.3753 0.3023
1.4993 37.0 8029 1.3745 0.3023
1.4844 38.0 8246 1.3738 0.3023
1.5191 39.0 8463 1.3732 0.3023
1.515 40.0 8680 1.3726 0.3256
1.4957 41.0 8897 1.3721 0.3256
1.5585 42.0 9114 1.3717 0.3256
1.5037 43.0 9331 1.3713 0.3256
1.4828 44.0 9548 1.3710 0.3256
1.4967 45.0 9765 1.3708 0.3256
1.5387 46.0 9982 1.3706 0.3256
1.5118 47.0 10199 1.3705 0.3256
1.5073 48.0 10416 1.3704 0.3256
1.5166 49.0 10633 1.3703 0.3256
1.4994 50.0 10850 1.3703 0.3256

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2