hkivancoral's picture
End of training
5439428
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_small_sgd_0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.35555555555555557

hushem_40x_deit_small_sgd_0001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3807
  • Accuracy: 0.3556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7636 1.0 215 1.5271 0.2222
1.5603 2.0 430 1.4695 0.2222
1.4189 3.0 645 1.4485 0.2444
1.4216 4.0 860 1.4404 0.3333
1.3718 5.0 1075 1.4361 0.3333
1.3271 6.0 1290 1.4331 0.3556
1.3291 7.0 1505 1.4309 0.3556
1.2611 8.0 1720 1.4294 0.3333
1.2392 9.0 1935 1.4281 0.3333
1.2352 10.0 2150 1.4273 0.3778
1.2132 11.0 2365 1.4268 0.3778
1.17 12.0 2580 1.4262 0.3778
1.1599 13.0 2795 1.4258 0.3778
1.1465 14.0 3010 1.4259 0.3778
1.1384 15.0 3225 1.4258 0.3556
1.1196 16.0 3440 1.4258 0.3333
1.1235 17.0 3655 1.4254 0.3333
1.092 18.0 3870 1.4252 0.3333
1.0493 19.0 4085 1.4248 0.3333
1.0602 20.0 4300 1.4241 0.2889
1.0537 21.0 4515 1.4232 0.2889
1.0424 22.0 4730 1.4223 0.2889
1.0373 23.0 4945 1.4208 0.2889
1.0255 24.0 5160 1.4191 0.3111
0.9946 25.0 5375 1.4173 0.3111
0.9526 26.0 5590 1.4155 0.3111
0.961 27.0 5805 1.4133 0.3111
0.9603 28.0 6020 1.4115 0.3111
0.9689 29.0 6235 1.4091 0.3111
0.9155 30.0 6450 1.4068 0.3111
0.9244 31.0 6665 1.4046 0.3111
0.9454 32.0 6880 1.4024 0.3111
0.9669 33.0 7095 1.4003 0.3111
0.935 34.0 7310 1.3982 0.3333
0.887 35.0 7525 1.3962 0.3333
0.9142 36.0 7740 1.3943 0.3333
0.9282 37.0 7955 1.3924 0.3333
0.8935 38.0 8170 1.3908 0.3333
0.9345 39.0 8385 1.3890 0.3333
0.8406 40.0 8600 1.3876 0.3333
0.8885 41.0 8815 1.3862 0.3333
0.9974 42.0 9030 1.3851 0.3333
0.9464 43.0 9245 1.3840 0.3333
0.9071 44.0 9460 1.3830 0.3333
0.9277 45.0 9675 1.3823 0.3333
0.8844 46.0 9890 1.3817 0.3333
0.8843 47.0 10105 1.3812 0.3333
0.9119 48.0 10320 1.3809 0.3556
0.9448 49.0 10535 1.3808 0.3556
0.8919 50.0 10750 1.3807 0.3556

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2