hkivancoral's picture
End of training
fde01af
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_small_sgd_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5813953488372093

hushem_40x_deit_small_sgd_0001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0466
  • Accuracy: 0.5814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6887 1.0 217 1.4610 0.2558
1.5962 2.0 434 1.3845 0.3488
1.5124 3.0 651 1.3560 0.3721
1.442 4.0 868 1.3419 0.3721
1.41 5.0 1085 1.3313 0.3488
1.3709 6.0 1302 1.3218 0.3721
1.3157 7.0 1519 1.3125 0.3721
1.3328 8.0 1736 1.3039 0.3488
1.3107 9.0 1953 1.2950 0.3488
1.2568 10.0 2170 1.2861 0.3488
1.2226 11.0 2387 1.2769 0.3256
1.198 12.0 2604 1.2671 0.3256
1.232 13.0 2821 1.2570 0.3488
1.1803 14.0 3038 1.2472 0.3488
1.214 15.0 3255 1.2376 0.3488
1.208 16.0 3472 1.2274 0.3953
1.1406 17.0 3689 1.2176 0.3953
1.1243 18.0 3906 1.2072 0.3953
1.1316 19.0 4123 1.1970 0.4884
1.1119 20.0 4340 1.1873 0.4884
1.117 21.0 4557 1.1775 0.5116
1.0609 22.0 4774 1.1681 0.5116
1.0751 23.0 4991 1.1588 0.5581
1.058 24.0 5208 1.1499 0.5581
1.0301 25.0 5425 1.1417 0.5581
1.089 26.0 5642 1.1338 0.5581
0.9909 27.0 5859 1.1255 0.5814
0.9932 28.0 6076 1.1180 0.5814
1.026 29.0 6293 1.1110 0.5814
1.0236 30.0 6510 1.1044 0.5814
1.0169 31.0 6727 1.0980 0.5814
1.0049 32.0 6944 1.0921 0.5814
1.0261 33.0 7161 1.0868 0.5814
0.994 34.0 7378 1.0819 0.5814
0.9887 35.0 7595 1.0769 0.5581
1.0137 36.0 7812 1.0725 0.5581
0.9359 37.0 8029 1.0687 0.5581
0.9531 38.0 8246 1.0651 0.5581
0.9682 39.0 8463 1.0620 0.5581
0.9947 40.0 8680 1.0590 0.5581
0.9063 41.0 8897 1.0565 0.5581
1.0195 42.0 9114 1.0543 0.5581
0.966 43.0 9331 1.0523 0.5581
0.9409 44.0 9548 1.0506 0.5581
0.9327 45.0 9765 1.0492 0.5581
0.9575 46.0 9982 1.0481 0.5814
0.9627 47.0 10199 1.0474 0.5814
0.9553 48.0 10416 1.0469 0.5814
0.9631 49.0 10633 1.0467 0.5814
0.944 50.0 10850 1.0466 0.5814

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2