hkivancoral's picture
End of training
0f9a43a
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_small_sgd_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4634146341463415

hushem_40x_deit_small_sgd_0001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1092
  • Accuracy: 0.4634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7467 1.0 220 1.6098 0.2683
1.5306 2.0 440 1.5314 0.2683
1.3989 3.0 660 1.5004 0.2439
1.3588 4.0 880 1.4811 0.2195
1.3953 5.0 1100 1.4639 0.2683
1.3096 6.0 1320 1.4476 0.2439
1.2743 7.0 1540 1.4329 0.2683
1.2405 8.0 1760 1.4190 0.2927
1.253 9.0 1980 1.4052 0.3171
1.2253 10.0 2200 1.3912 0.3171
1.1663 11.0 2420 1.3767 0.3659
1.1699 12.0 2640 1.3616 0.3659
1.1615 13.0 2860 1.3463 0.3659
1.0999 14.0 3080 1.3303 0.3902
1.1286 15.0 3300 1.3148 0.3659
1.1333 16.0 3520 1.2990 0.3659
1.075 17.0 3740 1.2842 0.3659
1.0779 18.0 3960 1.2709 0.3659
1.0652 19.0 4180 1.2579 0.3659
1.0475 20.0 4400 1.2462 0.3659
1.0095 21.0 4620 1.2350 0.3902
1.0607 22.0 4840 1.2247 0.3902
1.0243 23.0 5060 1.2151 0.4146
1.0174 24.0 5280 1.2064 0.4146
0.9654 25.0 5500 1.1977 0.3902
1.017 26.0 5720 1.1899 0.4146
1.0002 27.0 5940 1.1820 0.3902
1.0191 28.0 6160 1.1750 0.3902
0.9876 29.0 6380 1.1683 0.3902
0.9526 30.0 6600 1.1623 0.4146
0.9957 31.0 6820 1.1566 0.4390
0.9778 32.0 7040 1.1513 0.4390
0.9223 33.0 7260 1.1464 0.4634
0.9281 34.0 7480 1.1418 0.4634
0.9107 35.0 7700 1.1376 0.4634
0.9485 36.0 7920 1.1336 0.4634
0.9035 37.0 8140 1.1298 0.4634
0.9223 38.0 8360 1.1266 0.4634
0.9312 39.0 8580 1.1235 0.4634
0.8782 40.0 8800 1.1209 0.4634
0.9252 41.0 9020 1.1184 0.4634
0.8989 42.0 9240 1.1164 0.4634
0.8959 43.0 9460 1.1145 0.4634
0.8589 44.0 9680 1.1130 0.4634
0.8899 45.0 9900 1.1117 0.4634
0.8915 46.0 10120 1.1107 0.4634
0.9043 47.0 10340 1.1100 0.4634
0.8309 48.0 10560 1.1095 0.4634
0.8724 49.0 10780 1.1093 0.4634
0.9011 50.0 11000 1.1092 0.4634

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2