metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_tiny_rms_00001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9302325581395349
hushem_40x_deit_tiny_rms_00001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4488
- Accuracy: 0.9302
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0843 | 1.0 | 217 | 0.4280 | 0.8837 |
0.0143 | 2.0 | 434 | 0.2889 | 0.9302 |
0.0172 | 3.0 | 651 | 0.5423 | 0.9070 |
0.0189 | 4.0 | 868 | 1.1419 | 0.7907 |
0.0003 | 5.0 | 1085 | 0.4120 | 0.9302 |
0.0 | 6.0 | 1302 | 0.4870 | 0.9302 |
0.0 | 7.0 | 1519 | 0.5568 | 0.9070 |
0.0 | 8.0 | 1736 | 0.5757 | 0.8837 |
0.0 | 9.0 | 1953 | 0.6076 | 0.8837 |
0.0 | 10.0 | 2170 | 0.6516 | 0.8837 |
0.0 | 11.0 | 2387 | 0.6056 | 0.8837 |
0.0 | 12.0 | 2604 | 0.6691 | 0.8837 |
0.0 | 13.0 | 2821 | 0.6559 | 0.8837 |
0.0 | 14.0 | 3038 | 0.7098 | 0.9070 |
0.0 | 15.0 | 3255 | 0.6515 | 0.9070 |
0.0157 | 16.0 | 3472 | 0.6215 | 0.8837 |
0.0 | 17.0 | 3689 | 0.6307 | 0.8837 |
0.0 | 18.0 | 3906 | 0.7467 | 0.8837 |
0.0 | 19.0 | 4123 | 0.7677 | 0.8837 |
0.0 | 20.0 | 4340 | 0.7998 | 0.8605 |
0.0 | 21.0 | 4557 | 0.8197 | 0.8605 |
0.0 | 22.0 | 4774 | 0.8507 | 0.8605 |
0.0 | 23.0 | 4991 | 0.8634 | 0.8605 |
0.0 | 24.0 | 5208 | 0.8853 | 0.8605 |
0.0 | 25.0 | 5425 | 0.7783 | 0.9070 |
0.0 | 26.0 | 5642 | 0.7092 | 0.9302 |
0.0 | 27.0 | 5859 | 0.6309 | 0.9302 |
0.0 | 28.0 | 6076 | 0.6509 | 0.9302 |
0.0 | 29.0 | 6293 | 0.5569 | 0.9070 |
0.0 | 30.0 | 6510 | 0.5554 | 0.9302 |
0.0 | 31.0 | 6727 | 0.5595 | 0.9070 |
0.0 | 32.0 | 6944 | 0.5154 | 0.9302 |
0.0 | 33.0 | 7161 | 0.5043 | 0.9070 |
0.0 | 34.0 | 7378 | 0.5110 | 0.9535 |
0.0 | 35.0 | 7595 | 0.4416 | 0.9302 |
0.0 | 36.0 | 7812 | 0.4610 | 0.9535 |
0.0 | 37.0 | 8029 | 0.5159 | 0.9302 |
0.0 | 38.0 | 8246 | 0.5232 | 0.9302 |
0.0 | 39.0 | 8463 | 0.5109 | 0.9302 |
0.0 | 40.0 | 8680 | 0.4511 | 0.9535 |
0.0 | 41.0 | 8897 | 0.4620 | 0.9302 |
0.0 | 42.0 | 9114 | 0.4370 | 0.9302 |
0.0 | 43.0 | 9331 | 0.4660 | 0.9302 |
0.0 | 44.0 | 9548 | 0.4561 | 0.9302 |
0.0 | 45.0 | 9765 | 0.4386 | 0.9302 |
0.0 | 46.0 | 9982 | 0.4625 | 0.9302 |
0.0 | 47.0 | 10199 | 0.4505 | 0.9302 |
0.0 | 48.0 | 10416 | 0.4377 | 0.9302 |
0.0 | 49.0 | 10633 | 0.4484 | 0.9302 |
0.0 | 50.0 | 10850 | 0.4488 | 0.9302 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2