hkivancoral's picture
End of training
502a9c8
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_tiny_rms_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5555555555555556

hushem_40x_deit_tiny_rms_001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 7.3853
  • Accuracy: 0.5556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1884 1.0 215 1.1880 0.4444
0.7323 2.0 430 1.1545 0.5111
0.6559 3.0 645 3.0305 0.3556
0.5702 4.0 860 1.2302 0.5111
0.5375 5.0 1075 2.2528 0.4222
0.4472 6.0 1290 1.9208 0.5111
0.4382 7.0 1505 1.8095 0.4889
0.3809 8.0 1720 2.0821 0.4222
0.3012 9.0 1935 1.8136 0.4
0.2478 10.0 2150 2.1397 0.4889
0.2029 11.0 2365 1.9762 0.5556
0.1971 12.0 2580 2.3756 0.5778
0.213 13.0 2795 1.6329 0.6444
0.1476 14.0 3010 2.7699 0.5333
0.098 15.0 3225 2.9763 0.5556
0.1482 16.0 3440 3.4825 0.5111
0.1197 17.0 3655 2.4388 0.6444
0.0935 18.0 3870 2.6931 0.5778
0.0698 19.0 4085 3.8147 0.5333
0.1713 20.0 4300 3.1091 0.5556
0.0331 21.0 4515 3.7485 0.5778
0.0687 22.0 4730 3.9845 0.5778
0.0351 23.0 4945 3.2773 0.6
0.0341 24.0 5160 4.2021 0.5333
0.0324 25.0 5375 6.0388 0.4889
0.022 26.0 5590 4.1761 0.6
0.1048 27.0 5805 2.9470 0.6
0.0202 28.0 6020 3.8209 0.5778
0.0085 29.0 6235 4.1758 0.5111
0.0013 30.0 6450 4.2128 0.5556
0.0026 31.0 6665 4.4304 0.4667
0.0003 32.0 6880 4.6210 0.5111
0.015 33.0 7095 3.7643 0.5556
0.0066 34.0 7310 4.8748 0.5778
0.0 35.0 7525 4.7438 0.5556
0.0 36.0 7740 5.0565 0.5111
0.0 37.0 7955 5.3178 0.5333
0.0 38.0 8170 5.6008 0.5333
0.0 39.0 8385 5.8863 0.5333
0.0 40.0 8600 6.1779 0.5333
0.0 41.0 8815 6.4282 0.5333
0.0 42.0 9030 6.6702 0.5556
0.0 43.0 9245 6.8800 0.5556
0.0 44.0 9460 7.0514 0.5556
0.0 45.0 9675 7.1938 0.5556
0.0 46.0 9890 7.2836 0.5556
0.0 47.0 10105 7.3402 0.5556
0.0 48.0 10320 7.3740 0.5556
0.0 49.0 10535 7.3831 0.5556
0.0 50.0 10750 7.3853 0.5556

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2