hkivancoral's picture
End of training
4967325
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_tiny_rms_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4

hushem_40x_deit_tiny_rms_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 8.4415
  • Accuracy: 0.4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2259 1.0 215 1.1893 0.3778
0.7887 2.0 430 1.7800 0.3778
0.6967 3.0 645 1.8757 0.4667
0.6862 4.0 860 1.9414 0.4444
0.4924 5.0 1075 1.8919 0.4444
0.5712 6.0 1290 1.8316 0.5111
0.4554 7.0 1505 2.6959 0.5111
0.3791 8.0 1720 3.2703 0.4889
0.2815 9.0 1935 2.8206 0.4222
0.3229 10.0 2150 2.1796 0.3778
0.2732 11.0 2365 2.6937 0.4222
0.2161 12.0 2580 2.7085 0.4
0.2247 13.0 2795 2.7907 0.5556
0.1656 14.0 3010 3.5588 0.5111
0.2252 15.0 3225 3.4710 0.4667
0.1912 16.0 3440 4.0799 0.4667
0.2296 17.0 3655 3.3917 0.5778
0.0717 18.0 3870 5.2253 0.4222
0.0776 19.0 4085 4.4474 0.4667
0.0565 20.0 4300 5.1424 0.4222
0.0848 21.0 4515 4.9397 0.4667
0.0607 22.0 4730 4.6748 0.4667
0.0626 23.0 4945 5.0805 0.4889
0.0796 24.0 5160 5.0210 0.4444
0.0786 25.0 5375 5.7741 0.4667
0.011 26.0 5590 4.7102 0.5333
0.0247 27.0 5805 5.9220 0.4444
0.0051 28.0 6020 6.4658 0.4222
0.0246 29.0 6235 5.3041 0.5111
0.025 30.0 6450 5.4166 0.5333
0.0321 31.0 6665 5.7245 0.4444
0.0467 32.0 6880 5.9082 0.5111
0.0354 33.0 7095 5.7199 0.4667
0.0267 34.0 7310 6.9737 0.4444
0.0012 35.0 7525 6.7506 0.4222
0.0014 36.0 7740 7.0113 0.4222
0.0151 37.0 7955 6.8314 0.4444
0.0325 38.0 8170 6.8690 0.4444
0.0 39.0 8385 6.9350 0.4667
0.0006 40.0 8600 7.6894 0.4444
0.0001 41.0 8815 7.8369 0.4222
0.0001 42.0 9030 7.3604 0.4
0.0 43.0 9245 7.8724 0.3778
0.0 44.0 9460 7.8044 0.3333
0.0 45.0 9675 8.3094 0.4
0.001 46.0 9890 8.3688 0.4
0.0018 47.0 10105 8.4135 0.4
0.0 48.0 10320 8.3955 0.4
0.0 49.0 10535 8.4293 0.4
0.0 50.0 10750 8.4415 0.4

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2