hkivancoral's picture
End of training
8eb093f
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_tiny_sgd_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.27906976744186046

hushem_40x_deit_tiny_sgd_00001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4228
  • Accuracy: 0.2791

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4808 1.0 217 1.4816 0.2791
1.4823 2.0 434 1.4791 0.2791
1.4134 3.0 651 1.4766 0.2791
1.4759 4.0 868 1.4742 0.2791
1.4883 5.0 1085 1.4718 0.2791
1.4518 6.0 1302 1.4695 0.3023
1.4499 7.0 1519 1.4671 0.2791
1.4363 8.0 1736 1.4648 0.2791
1.4639 9.0 1953 1.4626 0.2791
1.447 10.0 2170 1.4604 0.2791
1.4636 11.0 2387 1.4583 0.3023
1.4249 12.0 2604 1.4562 0.3023
1.4551 13.0 2821 1.4542 0.3023
1.4299 14.0 3038 1.4523 0.2791
1.4254 15.0 3255 1.4505 0.2791
1.3712 16.0 3472 1.4487 0.2791
1.4294 17.0 3689 1.4469 0.2791
1.3982 18.0 3906 1.4452 0.2791
1.39 19.0 4123 1.4437 0.2791
1.3895 20.0 4340 1.4422 0.2791
1.3897 21.0 4557 1.4407 0.2791
1.381 22.0 4774 1.4393 0.2791
1.3878 23.0 4991 1.4380 0.2791
1.4255 24.0 5208 1.4367 0.2791
1.397 25.0 5425 1.4355 0.2791
1.3946 26.0 5642 1.4344 0.2791
1.4141 27.0 5859 1.4334 0.2791
1.391 28.0 6076 1.4324 0.2791
1.3772 29.0 6293 1.4314 0.2791
1.4053 30.0 6510 1.4305 0.2791
1.3414 31.0 6727 1.4297 0.2791
1.368 32.0 6944 1.4288 0.2791
1.3993 33.0 7161 1.4281 0.2791
1.3039 34.0 7378 1.4274 0.2791
1.3467 35.0 7595 1.4268 0.2791
1.3754 36.0 7812 1.4262 0.2791
1.3681 37.0 8029 1.4257 0.2791
1.3927 38.0 8246 1.4252 0.2791
1.3307 39.0 8463 1.4248 0.2791
1.3625 40.0 8680 1.4244 0.2791
1.3775 41.0 8897 1.4240 0.2791
1.3411 42.0 9114 1.4237 0.2791
1.3645 43.0 9331 1.4235 0.2791
1.3775 44.0 9548 1.4233 0.2791
1.3259 45.0 9765 1.4231 0.2791
1.3653 46.0 9982 1.4230 0.2791
1.3629 47.0 10199 1.4229 0.2791
1.3538 48.0 10416 1.4229 0.2791
1.3676 49.0 10633 1.4228 0.2791
1.357 50.0 10850 1.4228 0.2791

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2