metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_tiny_sgd_00001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.14285714285714285
hushem_40x_deit_tiny_sgd_00001_fold4
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.5700
- Accuracy: 0.1429
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.5195 | 1.0 | 219 | 1.6573 | 0.1429 |
1.4299 | 2.0 | 438 | 1.6538 | 0.1429 |
1.5002 | 3.0 | 657 | 1.6502 | 0.1429 |
1.4923 | 4.0 | 876 | 1.6467 | 0.1429 |
1.4507 | 5.0 | 1095 | 1.6433 | 0.1667 |
1.4843 | 6.0 | 1314 | 1.6398 | 0.1667 |
1.4439 | 7.0 | 1533 | 1.6365 | 0.1667 |
1.461 | 8.0 | 1752 | 1.6332 | 0.1667 |
1.4438 | 9.0 | 1971 | 1.6299 | 0.1667 |
1.421 | 10.0 | 2190 | 1.6268 | 0.1667 |
1.3797 | 11.0 | 2409 | 1.6238 | 0.1667 |
1.4481 | 12.0 | 2628 | 1.6208 | 0.1429 |
1.37 | 13.0 | 2847 | 1.6179 | 0.1429 |
1.4257 | 14.0 | 3066 | 1.6150 | 0.1429 |
1.3565 | 15.0 | 3285 | 1.6123 | 0.1429 |
1.3893 | 16.0 | 3504 | 1.6097 | 0.1429 |
1.4087 | 17.0 | 3723 | 1.6071 | 0.1429 |
1.3822 | 18.0 | 3942 | 1.6047 | 0.1429 |
1.3943 | 19.0 | 4161 | 1.6023 | 0.1429 |
1.4156 | 20.0 | 4380 | 1.6000 | 0.1429 |
1.397 | 21.0 | 4599 | 1.5977 | 0.1429 |
1.3921 | 22.0 | 4818 | 1.5956 | 0.1429 |
1.345 | 23.0 | 5037 | 1.5936 | 0.1429 |
1.3941 | 24.0 | 5256 | 1.5916 | 0.1429 |
1.3428 | 25.0 | 5475 | 1.5898 | 0.1429 |
1.3959 | 26.0 | 5694 | 1.5880 | 0.1429 |
1.3527 | 27.0 | 5913 | 1.5863 | 0.1429 |
1.3622 | 28.0 | 6132 | 1.5847 | 0.1429 |
1.3233 | 29.0 | 6351 | 1.5833 | 0.1429 |
1.3602 | 30.0 | 6570 | 1.5819 | 0.1429 |
1.3369 | 31.0 | 6789 | 1.5805 | 0.1429 |
1.3891 | 32.0 | 7008 | 1.5793 | 0.1429 |
1.3567 | 33.0 | 7227 | 1.5782 | 0.1429 |
1.3341 | 34.0 | 7446 | 1.5771 | 0.1429 |
1.3827 | 35.0 | 7665 | 1.5761 | 0.1429 |
1.3365 | 36.0 | 7884 | 1.5752 | 0.1429 |
1.3545 | 37.0 | 8103 | 1.5744 | 0.1429 |
1.3874 | 38.0 | 8322 | 1.5736 | 0.1429 |
1.3749 | 39.0 | 8541 | 1.5729 | 0.1429 |
1.3026 | 40.0 | 8760 | 1.5724 | 0.1429 |
1.3806 | 41.0 | 8979 | 1.5718 | 0.1429 |
1.3467 | 42.0 | 9198 | 1.5714 | 0.1429 |
1.3584 | 43.0 | 9417 | 1.5710 | 0.1429 |
1.3511 | 44.0 | 9636 | 1.5707 | 0.1429 |
1.3397 | 45.0 | 9855 | 1.5704 | 0.1429 |
1.35 | 46.0 | 10074 | 1.5703 | 0.1429 |
1.328 | 47.0 | 10293 | 1.5701 | 0.1429 |
1.3922 | 48.0 | 10512 | 1.5700 | 0.1429 |
1.3345 | 49.0 | 10731 | 1.5700 | 0.1429 |
1.3302 | 50.0 | 10950 | 1.5700 | 0.1429 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2