hkivancoral's picture
End of training
9bd9d1b
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_rms_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8372093023255814

hushem_5x_deit_small_rms_0001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8513
  • Accuracy: 0.8372

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4647 1.0 28 1.8602 0.2558
1.3185 2.0 56 1.0840 0.4884
0.9898 3.0 84 1.3302 0.3721
0.9442 4.0 112 1.0743 0.5349
0.6714 5.0 140 1.1638 0.5814
0.5907 6.0 168 0.8481 0.7442
0.3843 7.0 196 0.5582 0.7907
0.2836 8.0 224 0.9826 0.6977
0.163 9.0 252 0.9953 0.7907
0.0747 10.0 280 0.9182 0.8140
0.0702 11.0 308 0.8756 0.7907
0.0697 12.0 336 1.2367 0.7907
0.0531 13.0 364 1.5496 0.7442
0.0055 14.0 392 1.2182 0.8140
0.0148 15.0 420 1.4816 0.8140
0.0259 16.0 448 1.3748 0.7907
0.0208 17.0 476 1.5049 0.7209
0.0278 18.0 504 1.1689 0.8140
0.0002 19.0 532 1.6137 0.8372
0.0001 20.0 560 1.6368 0.8372
0.0 21.0 588 1.6426 0.8372
0.0 22.0 616 1.6498 0.8372
0.0 23.0 644 1.6573 0.8372
0.0 24.0 672 1.6654 0.8372
0.0 25.0 700 1.6746 0.8372
0.0 26.0 728 1.6832 0.8372
0.0 27.0 756 1.6985 0.8372
0.0 28.0 784 1.7057 0.8372
0.0 29.0 812 1.7143 0.8372
0.0 30.0 840 1.7226 0.8372
0.0 31.0 868 1.7340 0.8372
0.0 32.0 896 1.7422 0.8372
0.0 33.0 924 1.7506 0.8372
0.0 34.0 952 1.7590 0.8372
0.0 35.0 980 1.7673 0.8372
0.0 36.0 1008 1.7761 0.8372
0.0 37.0 1036 1.7852 0.8372
0.0 38.0 1064 1.7939 0.8372
0.0 39.0 1092 1.8014 0.8372
0.0 40.0 1120 1.8097 0.8372
0.0 41.0 1148 1.8172 0.8372
0.0 42.0 1176 1.8240 0.8372
0.0 43.0 1204 1.8302 0.8372
0.0 44.0 1232 1.8365 0.8372
0.0 45.0 1260 1.8414 0.8372
0.0 46.0 1288 1.8453 0.8372
0.0 47.0 1316 1.8499 0.8372
0.0 48.0 1344 1.8512 0.8372
0.0 49.0 1372 1.8513 0.8372
0.0 50.0 1400 1.8513 0.8372

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0