hkivancoral's picture
End of training
aa799db
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_rms_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9302325581395349

hushem_5x_deit_small_rms_0001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6867
  • Accuracy: 0.9302

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8625 1.0 28 0.7655 0.7442
0.213 2.0 56 0.3346 0.9070
0.0427 3.0 84 0.3169 0.8837
0.0088 4.0 112 0.2583 0.9070
0.0019 5.0 140 0.3591 0.9070
0.0013 6.0 168 0.3828 0.8837
0.0008 7.0 196 0.3548 0.9070
0.0007 8.0 224 0.3758 0.9302
0.0005 9.0 252 0.4221 0.9070
0.0004 10.0 280 0.4042 0.9302
0.0004 11.0 308 0.4067 0.9302
0.0003 12.0 336 0.4099 0.9302
0.0002 13.0 364 0.4211 0.9302
0.0002 14.0 392 0.4323 0.9302
0.0002 15.0 420 0.4463 0.9302
0.0002 16.0 448 0.4550 0.9302
0.0001 17.0 476 0.4114 0.9302
0.0001 18.0 504 0.4747 0.9302
0.0001 19.0 532 0.4880 0.9302
0.0001 20.0 560 0.4798 0.9302
0.0001 21.0 588 0.5078 0.9302
0.0001 22.0 616 0.5161 0.9302
0.0001 23.0 644 0.5322 0.9302
0.0001 24.0 672 0.5391 0.9302
0.0 25.0 700 0.5387 0.9302
0.0 26.0 728 0.5518 0.9302
0.0 27.0 756 0.5912 0.9302
0.0 28.0 784 0.5723 0.9302
0.0 29.0 812 0.5780 0.9302
0.0 30.0 840 0.5909 0.9302
0.0 31.0 868 0.5963 0.9302
0.0 32.0 896 0.6068 0.9302
0.0 33.0 924 0.6067 0.9302
0.0 34.0 952 0.6107 0.9302
0.0 35.0 980 0.5868 0.9302
0.0 36.0 1008 0.6292 0.9302
0.0 37.0 1036 0.6428 0.9302
0.0 38.0 1064 0.6729 0.9070
0.0 39.0 1092 0.6601 0.9302
0.0 40.0 1120 0.6776 0.9070
0.0 41.0 1148 0.6683 0.9302
0.0 42.0 1176 0.6712 0.9302
0.0 43.0 1204 0.6721 0.9302
0.0 44.0 1232 0.6819 0.9302
0.0 45.0 1260 0.6829 0.9302
0.0 46.0 1288 0.6827 0.9302
0.0 47.0 1316 0.6864 0.9302
0.0 48.0 1344 0.6865 0.9302
0.0 49.0 1372 0.6867 0.9302
0.0 50.0 1400 0.6867 0.9302

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0