hkivancoral's picture
End of training
a7b31c6
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_rms_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.35555555555555557

hushem_5x_deit_small_rms_001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6556
  • Accuracy: 0.3556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0324 1.0 27 1.4564 0.2444
1.4819 2.0 54 1.4327 0.2444
1.4504 3.0 81 1.4455 0.2667
1.4703 4.0 108 1.5353 0.2444
1.4319 5.0 135 1.4161 0.2444
1.4127 6.0 162 1.4083 0.2444
1.424 7.0 189 1.4264 0.2667
1.3928 8.0 216 1.4087 0.2889
1.4183 9.0 243 1.3797 0.2667
1.2937 10.0 270 1.5479 0.3333
1.444 11.0 297 1.4212 0.2667
1.2489 12.0 324 1.3827 0.3333
1.2092 13.0 351 1.4109 0.3333
1.1924 14.0 378 1.3647 0.3556
1.1322 15.0 405 1.4486 0.4
1.059 16.0 432 1.3236 0.2889
1.007 17.0 459 1.5059 0.3778
1.0396 18.0 486 1.8214 0.3778
0.9935 19.0 513 1.6035 0.2222
0.9595 20.0 540 1.8699 0.3111
0.9315 21.0 567 1.9455 0.2889
0.9127 22.0 594 1.9720 0.1778
0.9141 23.0 621 1.8863 0.4222
0.8941 24.0 648 2.4630 0.2444
0.861 25.0 675 2.3990 0.2
0.8474 26.0 702 2.1204 0.3556
0.7937 27.0 729 2.7394 0.3556
0.7958 28.0 756 2.5648 0.2
0.7373 29.0 783 2.5253 0.3778
0.7358 30.0 810 2.5059 0.3778
0.691 31.0 837 2.3895 0.4222
0.7103 32.0 864 2.5414 0.4222
0.6539 33.0 891 3.0204 0.3333
0.6275 34.0 918 2.6245 0.3778
0.5921 35.0 945 3.2133 0.2667
0.5912 36.0 972 3.5251 0.2667
0.5547 37.0 999 3.3775 0.2889
0.4976 38.0 1026 3.1294 0.4
0.4303 39.0 1053 3.2846 0.3778
0.3956 40.0 1080 3.2354 0.4444
0.3999 41.0 1107 3.0834 0.4667
0.3745 42.0 1134 3.3561 0.3333
0.3219 43.0 1161 3.3246 0.3333
0.2571 44.0 1188 3.4952 0.3556
0.2544 45.0 1215 3.6528 0.3778
0.2048 46.0 1242 3.6814 0.3333
0.2017 47.0 1269 3.5396 0.3778
0.1409 48.0 1296 3.6629 0.3556
0.1528 49.0 1323 3.6556 0.3556
0.122 50.0 1350 3.6556 0.3556

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0