hkivancoral's picture
End of training
c30aa2c
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_sgd_0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3111111111111111

hushem_5x_deit_small_sgd_0001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3695
  • Accuracy: 0.3111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5195 1.0 27 1.4999 0.2889
1.4914 2.0 54 1.4892 0.2889
1.5108 3.0 81 1.4789 0.2889
1.5345 4.0 108 1.4698 0.2667
1.4684 5.0 135 1.4617 0.2667
1.4525 6.0 162 1.4534 0.2667
1.4298 7.0 189 1.4465 0.2667
1.4569 8.0 216 1.4397 0.2444
1.4283 9.0 243 1.4337 0.2444
1.4203 10.0 270 1.4280 0.2444
1.3871 11.0 297 1.4228 0.2444
1.4156 12.0 324 1.4180 0.2444
1.4346 13.0 351 1.4134 0.2444
1.4076 14.0 378 1.4093 0.2444
1.425 15.0 405 1.4059 0.2444
1.4406 16.0 432 1.4025 0.2444
1.4069 17.0 459 1.3996 0.2444
1.3779 18.0 486 1.3968 0.2444
1.3991 19.0 513 1.3941 0.2667
1.3962 20.0 540 1.3918 0.2667
1.3954 21.0 567 1.3897 0.2889
1.3886 22.0 594 1.3877 0.2889
1.3775 23.0 621 1.3858 0.2889
1.3714 24.0 648 1.3842 0.2889
1.4056 25.0 675 1.3826 0.2889
1.4026 26.0 702 1.3812 0.2889
1.359 27.0 729 1.3799 0.2889
1.3709 28.0 756 1.3787 0.2889
1.3667 29.0 783 1.3776 0.2889
1.3672 30.0 810 1.3766 0.2889
1.3762 31.0 837 1.3757 0.2889
1.3384 32.0 864 1.3749 0.2889
1.3698 33.0 891 1.3742 0.2889
1.3636 34.0 918 1.3735 0.3111
1.3439 35.0 945 1.3729 0.3111
1.3571 36.0 972 1.3723 0.3111
1.3688 37.0 999 1.3718 0.3111
1.3527 38.0 1026 1.3714 0.3111
1.3641 39.0 1053 1.3710 0.3111
1.3538 40.0 1080 1.3707 0.3111
1.3693 41.0 1107 1.3704 0.3111
1.3789 42.0 1134 1.3701 0.3111
1.3917 43.0 1161 1.3699 0.3111
1.3524 44.0 1188 1.3698 0.3111
1.367 45.0 1215 1.3696 0.3111
1.3553 46.0 1242 1.3696 0.3111
1.3523 47.0 1269 1.3695 0.3111
1.3646 48.0 1296 1.3695 0.3111
1.3891 49.0 1323 1.3695 0.3111
1.3396 50.0 1350 1.3695 0.3111

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0