metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_small_sgd_0001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.3333333333333333
hushem_5x_deit_small_sgd_0001_fold2
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3896
- Accuracy: 0.3333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.5183 | 1.0 | 27 | 1.5038 | 0.1778 |
1.502 | 2.0 | 54 | 1.4946 | 0.2 |
1.5109 | 3.0 | 81 | 1.4859 | 0.2222 |
1.5446 | 4.0 | 108 | 1.4781 | 0.2444 |
1.4687 | 5.0 | 135 | 1.4710 | 0.2444 |
1.4554 | 6.0 | 162 | 1.4641 | 0.2889 |
1.4113 | 7.0 | 189 | 1.4582 | 0.2889 |
1.4434 | 8.0 | 216 | 1.4525 | 0.2667 |
1.4243 | 9.0 | 243 | 1.4473 | 0.2667 |
1.4268 | 10.0 | 270 | 1.4425 | 0.2889 |
1.386 | 11.0 | 297 | 1.4382 | 0.2889 |
1.4235 | 12.0 | 324 | 1.4341 | 0.2667 |
1.4228 | 13.0 | 351 | 1.4304 | 0.2667 |
1.4091 | 14.0 | 378 | 1.4269 | 0.2889 |
1.4135 | 15.0 | 405 | 1.4239 | 0.2667 |
1.4228 | 16.0 | 432 | 1.4210 | 0.2889 |
1.4188 | 17.0 | 459 | 1.4184 | 0.2889 |
1.3824 | 18.0 | 486 | 1.4159 | 0.3333 |
1.3861 | 19.0 | 513 | 1.4136 | 0.3111 |
1.393 | 20.0 | 540 | 1.4115 | 0.3111 |
1.4051 | 21.0 | 567 | 1.4096 | 0.3111 |
1.373 | 22.0 | 594 | 1.4077 | 0.3333 |
1.3737 | 23.0 | 621 | 1.4060 | 0.3333 |
1.3668 | 24.0 | 648 | 1.4044 | 0.3556 |
1.362 | 25.0 | 675 | 1.4030 | 0.3556 |
1.3931 | 26.0 | 702 | 1.4016 | 0.3556 |
1.3504 | 27.0 | 729 | 1.4003 | 0.3556 |
1.3706 | 28.0 | 756 | 1.3992 | 0.3556 |
1.359 | 29.0 | 783 | 1.3981 | 0.3556 |
1.3774 | 30.0 | 810 | 1.3972 | 0.3556 |
1.3678 | 31.0 | 837 | 1.3963 | 0.3556 |
1.3418 | 32.0 | 864 | 1.3955 | 0.3556 |
1.3702 | 33.0 | 891 | 1.3947 | 0.3556 |
1.3589 | 34.0 | 918 | 1.3940 | 0.3556 |
1.3212 | 35.0 | 945 | 1.3933 | 0.3333 |
1.3648 | 36.0 | 972 | 1.3928 | 0.3333 |
1.3509 | 37.0 | 999 | 1.3922 | 0.3333 |
1.3506 | 38.0 | 1026 | 1.3917 | 0.3333 |
1.3673 | 39.0 | 1053 | 1.3913 | 0.3333 |
1.3657 | 40.0 | 1080 | 1.3910 | 0.3333 |
1.3651 | 41.0 | 1107 | 1.3906 | 0.3333 |
1.3688 | 42.0 | 1134 | 1.3904 | 0.3333 |
1.3871 | 43.0 | 1161 | 1.3901 | 0.3333 |
1.3307 | 44.0 | 1188 | 1.3899 | 0.3333 |
1.3505 | 45.0 | 1215 | 1.3898 | 0.3333 |
1.3367 | 46.0 | 1242 | 1.3897 | 0.3333 |
1.3605 | 47.0 | 1269 | 1.3896 | 0.3333 |
1.3556 | 48.0 | 1296 | 1.3896 | 0.3333 |
1.3876 | 49.0 | 1323 | 1.3896 | 0.3333 |
1.3357 | 50.0 | 1350 | 1.3896 | 0.3333 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0