hkivancoral's picture
End of training
32fe188
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_sgd_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3333333333333333

hushem_5x_deit_small_sgd_0001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3896
  • Accuracy: 0.3333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5183 1.0 27 1.5038 0.1778
1.502 2.0 54 1.4946 0.2
1.5109 3.0 81 1.4859 0.2222
1.5446 4.0 108 1.4781 0.2444
1.4687 5.0 135 1.4710 0.2444
1.4554 6.0 162 1.4641 0.2889
1.4113 7.0 189 1.4582 0.2889
1.4434 8.0 216 1.4525 0.2667
1.4243 9.0 243 1.4473 0.2667
1.4268 10.0 270 1.4425 0.2889
1.386 11.0 297 1.4382 0.2889
1.4235 12.0 324 1.4341 0.2667
1.4228 13.0 351 1.4304 0.2667
1.4091 14.0 378 1.4269 0.2889
1.4135 15.0 405 1.4239 0.2667
1.4228 16.0 432 1.4210 0.2889
1.4188 17.0 459 1.4184 0.2889
1.3824 18.0 486 1.4159 0.3333
1.3861 19.0 513 1.4136 0.3111
1.393 20.0 540 1.4115 0.3111
1.4051 21.0 567 1.4096 0.3111
1.373 22.0 594 1.4077 0.3333
1.3737 23.0 621 1.4060 0.3333
1.3668 24.0 648 1.4044 0.3556
1.362 25.0 675 1.4030 0.3556
1.3931 26.0 702 1.4016 0.3556
1.3504 27.0 729 1.4003 0.3556
1.3706 28.0 756 1.3992 0.3556
1.359 29.0 783 1.3981 0.3556
1.3774 30.0 810 1.3972 0.3556
1.3678 31.0 837 1.3963 0.3556
1.3418 32.0 864 1.3955 0.3556
1.3702 33.0 891 1.3947 0.3556
1.3589 34.0 918 1.3940 0.3556
1.3212 35.0 945 1.3933 0.3333
1.3648 36.0 972 1.3928 0.3333
1.3509 37.0 999 1.3922 0.3333
1.3506 38.0 1026 1.3917 0.3333
1.3673 39.0 1053 1.3913 0.3333
1.3657 40.0 1080 1.3910 0.3333
1.3651 41.0 1107 1.3906 0.3333
1.3688 42.0 1134 1.3904 0.3333
1.3871 43.0 1161 1.3901 0.3333
1.3307 44.0 1188 1.3899 0.3333
1.3505 45.0 1215 1.3898 0.3333
1.3367 46.0 1242 1.3897 0.3333
1.3605 47.0 1269 1.3896 0.3333
1.3556 48.0 1296 1.3896 0.3333
1.3876 49.0 1323 1.3896 0.3333
1.3357 50.0 1350 1.3896 0.3333

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0