hkivancoral's picture
End of training
c69ca1c
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_sgd_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2619047619047619

hushem_5x_deit_small_sgd_0001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3721
  • Accuracy: 0.2619

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5364 1.0 28 1.4759 0.2857
1.6032 2.0 56 1.4677 0.2857
1.5235 3.0 84 1.4598 0.2857
1.5363 4.0 112 1.4530 0.2857
1.4963 5.0 140 1.4466 0.2857
1.4798 6.0 168 1.4404 0.2857
1.4963 7.0 196 1.4349 0.2857
1.441 8.0 224 1.4297 0.3095
1.5032 9.0 252 1.4249 0.3095
1.4231 10.0 280 1.4205 0.3095
1.4482 11.0 308 1.4164 0.3095
1.4398 12.0 336 1.4127 0.3095
1.468 13.0 364 1.4093 0.3095
1.4278 14.0 392 1.4061 0.3095
1.4624 15.0 420 1.4032 0.3095
1.438 16.0 448 1.4004 0.2857
1.4401 17.0 476 1.3979 0.2857
1.416 18.0 504 1.3956 0.3095
1.4033 19.0 532 1.3934 0.3333
1.4123 20.0 560 1.3916 0.3333
1.4056 21.0 588 1.3899 0.3095
1.4089 22.0 616 1.3883 0.3333
1.3801 23.0 644 1.3868 0.3333
1.3733 24.0 672 1.3854 0.3095
1.3798 25.0 700 1.3840 0.3095
1.4051 26.0 728 1.3828 0.3095
1.4017 27.0 756 1.3817 0.3095
1.4006 28.0 784 1.3807 0.3095
1.368 29.0 812 1.3797 0.3095
1.3628 30.0 840 1.3788 0.3333
1.3803 31.0 868 1.3780 0.2619
1.3495 32.0 896 1.3773 0.2619
1.393 33.0 924 1.3766 0.2619
1.3379 34.0 952 1.3760 0.2619
1.3609 35.0 980 1.3754 0.2619
1.3521 36.0 1008 1.3748 0.2619
1.3648 37.0 1036 1.3744 0.2619
1.341 38.0 1064 1.3740 0.2619
1.3689 39.0 1092 1.3736 0.2619
1.3877 40.0 1120 1.3733 0.2619
1.4062 41.0 1148 1.3730 0.2619
1.3585 42.0 1176 1.3727 0.2619
1.3339 43.0 1204 1.3725 0.2619
1.3351 44.0 1232 1.3724 0.2619
1.3978 45.0 1260 1.3722 0.2619
1.3819 46.0 1288 1.3721 0.2619
1.3511 47.0 1316 1.3721 0.2619
1.3593 48.0 1344 1.3721 0.2619
1.3691 49.0 1372 1.3721 0.2619
1.3757 50.0 1400 1.3721 0.2619

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0