hkivancoral's picture
End of training
3fba3ef
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_sgd_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5

hushem_5x_deit_small_sgd_001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0586
  • Accuracy: 0.5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.487 1.0 28 1.4172 0.3095
1.4655 2.0 56 1.3829 0.3333
1.3519 3.0 84 1.3645 0.2619
1.3235 4.0 112 1.3524 0.2619
1.3019 5.0 140 1.3421 0.2857
1.2683 6.0 168 1.3287 0.2857
1.2448 7.0 196 1.3147 0.2857
1.2154 8.0 224 1.3011 0.2619
1.1886 9.0 252 1.2876 0.3571
1.1547 10.0 280 1.2739 0.3810
1.1374 11.0 308 1.2618 0.3810
1.1111 12.0 336 1.2488 0.3810
1.1298 13.0 364 1.2398 0.4048
1.0797 14.0 392 1.2302 0.4048
1.0414 15.0 420 1.2217 0.4286
1.061 16.0 448 1.2120 0.4286
1.0634 17.0 476 1.2016 0.4524
1.0054 18.0 504 1.1928 0.4524
0.9762 19.0 532 1.1844 0.4524
1.0106 20.0 560 1.1764 0.4524
0.9235 21.0 588 1.1685 0.4524
0.9458 22.0 616 1.1599 0.4762
0.9326 23.0 644 1.1543 0.5
0.9222 24.0 672 1.1465 0.5
0.8846 25.0 700 1.1391 0.5
0.8795 26.0 728 1.1307 0.4762
0.8711 27.0 756 1.1242 0.5238
0.8921 28.0 784 1.1184 0.5238
0.8796 29.0 812 1.1133 0.5238
0.8567 30.0 840 1.1054 0.5238
0.8632 31.0 868 1.1011 0.5238
0.8179 32.0 896 1.0965 0.5238
0.8418 33.0 924 1.0917 0.5238
0.8097 34.0 952 1.0866 0.5238
0.8474 35.0 980 1.0818 0.5238
0.7989 36.0 1008 1.0776 0.5238
0.7935 37.0 1036 1.0750 0.5238
0.8104 38.0 1064 1.0725 0.5238
0.8018 39.0 1092 1.0698 0.5238
0.797 40.0 1120 1.0673 0.5238
0.8004 41.0 1148 1.0654 0.5238
0.775 42.0 1176 1.0641 0.5
0.7606 43.0 1204 1.0623 0.5
0.7649 44.0 1232 1.0613 0.5
0.7627 45.0 1260 1.0601 0.5
0.7807 46.0 1288 1.0595 0.5
0.7697 47.0 1316 1.0588 0.5
0.7683 48.0 1344 1.0586 0.5
0.783 49.0 1372 1.0586 0.5
0.7862 50.0 1400 1.0586 0.5

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0