hkivancoral's picture
End of training
7a23dd8
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_rms_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8292682926829268

hushem_5x_deit_tiny_rms_00001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1081
  • Accuracy: 0.8293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.957 1.0 28 0.7236 0.7073
0.3642 2.0 56 0.5185 0.8049
0.1944 3.0 84 0.5546 0.8049
0.0826 4.0 112 0.7838 0.7561
0.027 5.0 140 0.5372 0.8049
0.0125 6.0 168 0.5869 0.8293
0.0034 7.0 196 0.7015 0.8293
0.0012 8.0 224 0.6670 0.8049
0.0008 9.0 252 0.6919 0.8293
0.0006 10.0 280 0.7125 0.8293
0.0004 11.0 308 0.7267 0.8293
0.0004 12.0 336 0.7569 0.8293
0.0003 13.0 364 0.7526 0.8293
0.0003 14.0 392 0.7915 0.8293
0.0002 15.0 420 0.8002 0.8293
0.0002 16.0 448 0.8251 0.8293
0.0002 17.0 476 0.8438 0.8293
0.0001 18.0 504 0.8466 0.8293
0.0001 19.0 532 0.8704 0.8293
0.0001 20.0 560 0.8762 0.8293
0.0001 21.0 588 0.8972 0.8293
0.0001 22.0 616 0.8987 0.8293
0.0001 23.0 644 0.9318 0.8293
0.0001 24.0 672 0.9238 0.8293
0.0001 25.0 700 0.9169 0.8293
0.0 26.0 728 0.9411 0.8293
0.0 27.0 756 0.9447 0.8293
0.0 28.0 784 0.9671 0.8293
0.0 29.0 812 0.9709 0.8293
0.0 30.0 840 0.9844 0.8293
0.0 31.0 868 0.9959 0.8293
0.0 32.0 896 1.0060 0.8293
0.0 33.0 924 1.0055 0.8293
0.0 34.0 952 1.0143 0.8293
0.0 35.0 980 1.0276 0.8293
0.0 36.0 1008 1.0321 0.8293
0.0 37.0 1036 1.0476 0.8293
0.0 38.0 1064 1.0409 0.8293
0.0 39.0 1092 1.0558 0.8293
0.0 40.0 1120 1.0678 0.8293
0.0 41.0 1148 1.0832 0.8293
0.0 42.0 1176 1.0928 0.8293
0.0 43.0 1204 1.0842 0.8293
0.0 44.0 1232 1.0881 0.8293
0.0 45.0 1260 1.0924 0.8293
0.0 46.0 1288 1.1046 0.8293
0.0 47.0 1316 1.1089 0.8293
0.0 48.0 1344 1.1085 0.8293
0.0 49.0 1372 1.1081 0.8293
0.0 50.0 1400 1.1081 0.8293

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0