hkivancoral's picture
End of training
25fa629
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_sgd_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.38095238095238093

hushem_5x_deit_tiny_sgd_0001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3803
  • Accuracy: 0.3810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.509 1.0 28 1.6728 0.2857
1.4745 2.0 56 1.6494 0.2857
1.4631 3.0 84 1.6263 0.2857
1.4901 4.0 112 1.6063 0.2857
1.441 5.0 140 1.5891 0.2857
1.4757 6.0 168 1.5714 0.2857
1.4394 7.0 196 1.5560 0.2857
1.4378 8.0 224 1.5417 0.2857
1.4304 9.0 252 1.5286 0.2857
1.455 10.0 280 1.5162 0.2857
1.4518 11.0 308 1.5058 0.2857
1.4092 12.0 336 1.4955 0.3095
1.4226 13.0 364 1.4865 0.3095
1.3993 14.0 392 1.4783 0.3095
1.3967 15.0 420 1.4705 0.3095
1.411 16.0 448 1.4633 0.3095
1.4285 17.0 476 1.4567 0.3095
1.3979 18.0 504 1.4501 0.3333
1.3856 19.0 532 1.4445 0.3333
1.3836 20.0 560 1.4396 0.3333
1.3724 21.0 588 1.4346 0.3333
1.4133 22.0 616 1.4302 0.3333
1.3803 23.0 644 1.4261 0.3571
1.38 24.0 672 1.4220 0.3571
1.3524 25.0 700 1.4181 0.3571
1.3732 26.0 728 1.4145 0.3571
1.3766 27.0 756 1.4110 0.3571
1.3865 28.0 784 1.4081 0.3571
1.3436 29.0 812 1.4052 0.3571
1.3611 30.0 840 1.4024 0.3571
1.3712 31.0 868 1.3999 0.3571
1.3547 32.0 896 1.3975 0.3571
1.3736 33.0 924 1.3953 0.3571
1.3568 34.0 952 1.3933 0.3571
1.3531 35.0 980 1.3914 0.3571
1.3544 36.0 1008 1.3897 0.3571
1.3181 37.0 1036 1.3881 0.3571
1.3538 38.0 1064 1.3867 0.3571
1.3828 39.0 1092 1.3855 0.3810
1.3242 40.0 1120 1.3844 0.3810
1.3519 41.0 1148 1.3834 0.3810
1.3218 42.0 1176 1.3826 0.3810
1.3603 43.0 1204 1.3819 0.3810
1.3249 44.0 1232 1.3813 0.3810
1.3333 45.0 1260 1.3809 0.3810
1.3432 46.0 1288 1.3806 0.3810
1.333 47.0 1316 1.3804 0.3810
1.3303 48.0 1344 1.3803 0.3810
1.3729 49.0 1372 1.3803 0.3810
1.3281 50.0 1400 1.3803 0.3810

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0