hkivancoral's picture
End of training
6d91862
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_sgd_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4222222222222222

hushem_5x_deit_tiny_sgd_001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3348
  • Accuracy: 0.4222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4407 1.0 27 1.4410 0.2667
1.382 2.0 54 1.4092 0.2667
1.3657 3.0 81 1.3896 0.2889
1.3344 4.0 108 1.3798 0.3111
1.2537 5.0 135 1.3657 0.3111
1.2237 6.0 162 1.3512 0.3333
1.2007 7.0 189 1.3419 0.3333
1.1972 8.0 216 1.3343 0.3556
1.1733 9.0 243 1.3294 0.3556
1.1145 10.0 270 1.3216 0.3778
1.1155 11.0 297 1.3166 0.3778
1.036 12.0 324 1.3103 0.3778
1.0595 13.0 351 1.3110 0.3778
1.0374 14.0 378 1.3072 0.3556
1.0659 15.0 405 1.3094 0.3778
1.034 16.0 432 1.3075 0.3778
0.954 17.0 459 1.3079 0.3778
0.9531 18.0 486 1.3085 0.3778
0.957 19.0 513 1.3124 0.3778
0.8978 20.0 540 1.3062 0.3778
0.885 21.0 567 1.3090 0.3778
0.8819 22.0 594 1.3143 0.3778
0.8801 23.0 621 1.3162 0.3778
0.857 24.0 648 1.3096 0.3778
0.8479 25.0 675 1.3101 0.3778
0.8743 26.0 702 1.3127 0.4
0.8288 27.0 729 1.3204 0.4
0.8104 28.0 756 1.3212 0.4
0.8245 29.0 783 1.3255 0.4
0.8139 30.0 810 1.3165 0.4
0.796 31.0 837 1.3232 0.4
0.7919 32.0 864 1.3216 0.4
0.7796 33.0 891 1.3211 0.4
0.7571 34.0 918 1.3245 0.4222
0.7521 35.0 945 1.3258 0.4222
0.7479 36.0 972 1.3280 0.4222
0.7621 37.0 999 1.3305 0.4222
0.7058 38.0 1026 1.3305 0.4222
0.71 39.0 1053 1.3319 0.4222
0.7228 40.0 1080 1.3314 0.4222
0.7146 41.0 1107 1.3317 0.4222
0.7189 42.0 1134 1.3333 0.4222
0.7405 43.0 1161 1.3338 0.4222
0.6872 44.0 1188 1.3335 0.4222
0.6996 45.0 1215 1.3344 0.4222
0.6979 46.0 1242 1.3345 0.4222
0.7035 47.0 1269 1.3347 0.4222
0.703 48.0 1296 1.3347 0.4222
0.7245 49.0 1323 1.3348 0.4222
0.7019 50.0 1350 1.3348 0.4222

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0