hkivancoral's picture
End of training
01b3dd5
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5121951219512195

hushem_5x_deit_tiny_sgd_001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0480
  • Accuracy: 0.5122

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4966 1.0 28 1.5748 0.2439
1.363 2.0 56 1.4510 0.2927
1.3445 3.0 84 1.3731 0.3902
1.2909 4.0 112 1.3148 0.3902
1.2782 5.0 140 1.2775 0.4146
1.2431 6.0 168 1.2527 0.4146
1.1698 7.0 196 1.2349 0.4634
1.1766 8.0 224 1.2144 0.4634
1.17 9.0 252 1.1948 0.4634
1.1062 10.0 280 1.1764 0.4390
1.0601 11.0 308 1.1840 0.4634
1.0566 12.0 336 1.1703 0.4634
1.0478 13.0 364 1.1443 0.4634
1.0482 14.0 392 1.1542 0.4634
1.0161 15.0 420 1.1465 0.4634
1.0335 16.0 448 1.1434 0.4634
0.9719 17.0 476 1.1475 0.4634
0.9588 18.0 504 1.1439 0.4634
1.0081 19.0 532 1.1431 0.4634
0.973 20.0 560 1.1304 0.4878
0.94 21.0 588 1.1093 0.4878
0.8982 22.0 616 1.1184 0.4878
0.9204 23.0 644 1.1332 0.4634
0.8435 24.0 672 1.1088 0.4878
0.8736 25.0 700 1.0913 0.4878
0.846 26.0 728 1.0897 0.4878
0.8446 27.0 756 1.0809 0.4878
0.8745 28.0 784 1.0794 0.4878
0.8251 29.0 812 1.0765 0.5122
0.8547 30.0 840 1.0870 0.4878
0.7939 31.0 868 1.0770 0.4878
0.7828 32.0 896 1.0780 0.4878
0.8106 33.0 924 1.0700 0.5122
0.784 34.0 952 1.0593 0.5122
0.7795 35.0 980 1.0615 0.4878
0.8007 36.0 1008 1.0592 0.4878
0.726 37.0 1036 1.0594 0.4878
0.7657 38.0 1064 1.0523 0.4878
0.7942 39.0 1092 1.0544 0.4878
0.7485 40.0 1120 1.0497 0.5122
0.7752 41.0 1148 1.0549 0.5122
0.7115 42.0 1176 1.0535 0.4878
0.7477 43.0 1204 1.0497 0.5122
0.769 44.0 1232 1.0484 0.5122
0.7292 45.0 1260 1.0496 0.5122
0.7475 46.0 1288 1.0482 0.5122
0.7629 47.0 1316 1.0480 0.5122
0.8 48.0 1344 1.0480 0.5122
0.7301 49.0 1372 1.0480 0.5122
0.738 50.0 1400 1.0480 0.5122

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0