hkivancoral's picture
End of training
889f350
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_adamax_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8933333333333333

smids_10x_beit_large_adamax_00001_fold4

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1774
  • Accuracy: 0.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.174 1.0 750 0.3318 0.8817
0.0694 2.0 1500 0.3979 0.8833
0.0385 3.0 2250 0.6069 0.8817
0.0028 4.0 3000 0.7041 0.8767
0.0151 5.0 3750 0.8263 0.8783
0.017 6.0 4500 0.8468 0.8917
0.0004 7.0 5250 0.9156 0.8817
0.0149 8.0 6000 0.9947 0.8883
0.0019 9.0 6750 0.9986 0.8833
0.0 10.0 7500 1.0174 0.89
0.0002 11.0 8250 1.0347 0.8983
0.0006 12.0 9000 1.1212 0.8883
0.0007 13.0 9750 1.1145 0.9
0.002 14.0 10500 1.1511 0.895
0.0113 15.0 11250 1.1891 0.8833
0.0193 16.0 12000 1.1467 0.8833
0.0 17.0 12750 1.2067 0.8833
0.0 18.0 13500 1.1030 0.8917
0.0 19.0 14250 1.2269 0.8817
0.0 20.0 15000 1.2142 0.8983
0.0 21.0 15750 1.2333 0.8833
0.0 22.0 16500 1.2215 0.89
0.0 23.0 17250 1.1755 0.88
0.0001 24.0 18000 1.2025 0.89
0.0 25.0 18750 1.1234 0.8967
0.0 26.0 19500 1.1299 0.8933
0.0 27.0 20250 1.1278 0.8933
0.0 28.0 21000 1.1853 0.89
0.0 29.0 21750 1.1366 0.8967
0.0 30.0 22500 1.2109 0.8817
0.0 31.0 23250 1.2247 0.88
0.0124 32.0 24000 1.2057 0.885
0.0 33.0 24750 1.2082 0.8933
0.0 34.0 25500 1.1875 0.8933
0.0 35.0 26250 1.1823 0.8983
0.0 36.0 27000 1.1794 0.8883
0.0 37.0 27750 1.1760 0.8917
0.0 38.0 28500 1.1363 0.895
0.0 39.0 29250 1.1574 0.895
0.0 40.0 30000 1.1725 0.8933
0.0 41.0 30750 1.1844 0.8867
0.0 42.0 31500 1.1542 0.8933
0.0 43.0 32250 1.1472 0.895
0.0 44.0 33000 1.1640 0.8917
0.0 45.0 33750 1.1642 0.89
0.0 46.0 34500 1.1680 0.8933
0.0 47.0 35250 1.1880 0.895
0.0 48.0 36000 1.1744 0.8933
0.0 49.0 36750 1.1763 0.8933
0.0008 50.0 37500 1.1774 0.8933

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2