smids_10x_beit_large_adamax_001_fold5
This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8836
- Accuracy: 0.905
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3665 | 1.0 | 750 | 0.3594 | 0.8583 |
0.2964 | 2.0 | 1500 | 0.4126 | 0.8483 |
0.2817 | 3.0 | 2250 | 0.2955 | 0.895 |
0.2107 | 4.0 | 3000 | 0.4285 | 0.8483 |
0.2441 | 5.0 | 3750 | 0.2917 | 0.905 |
0.2284 | 6.0 | 4500 | 0.3000 | 0.8933 |
0.1417 | 7.0 | 5250 | 0.3775 | 0.9033 |
0.1212 | 8.0 | 6000 | 0.4010 | 0.9 |
0.1114 | 9.0 | 6750 | 0.3900 | 0.8917 |
0.1229 | 10.0 | 7500 | 0.5863 | 0.8833 |
0.0978 | 11.0 | 8250 | 0.5114 | 0.8883 |
0.019 | 12.0 | 9000 | 0.6596 | 0.9033 |
0.0244 | 13.0 | 9750 | 0.6428 | 0.9017 |
0.0242 | 14.0 | 10500 | 0.6293 | 0.9 |
0.0159 | 15.0 | 11250 | 0.5943 | 0.9067 |
0.0287 | 16.0 | 12000 | 0.4876 | 0.9033 |
0.0161 | 17.0 | 12750 | 0.7094 | 0.8933 |
0.0033 | 18.0 | 13500 | 0.7392 | 0.9117 |
0.0133 | 19.0 | 14250 | 0.6855 | 0.9017 |
0.0009 | 20.0 | 15000 | 0.7025 | 0.895 |
0.033 | 21.0 | 15750 | 0.5767 | 0.895 |
0.0007 | 22.0 | 16500 | 0.6533 | 0.8983 |
0.0005 | 23.0 | 17250 | 0.8501 | 0.8883 |
0.0041 | 24.0 | 18000 | 0.6751 | 0.91 |
0.0016 | 25.0 | 18750 | 0.8175 | 0.8983 |
0.022 | 26.0 | 19500 | 0.7166 | 0.9067 |
0.002 | 27.0 | 20250 | 0.7746 | 0.9033 |
0.0002 | 28.0 | 21000 | 0.7048 | 0.91 |
0.0002 | 29.0 | 21750 | 0.8217 | 0.9083 |
0.0187 | 30.0 | 22500 | 0.7107 | 0.8983 |
0.0002 | 31.0 | 23250 | 0.7863 | 0.9133 |
0.0 | 32.0 | 24000 | 0.8314 | 0.8983 |
0.0 | 33.0 | 24750 | 0.7909 | 0.8967 |
0.0003 | 34.0 | 25500 | 0.8566 | 0.905 |
0.0 | 35.0 | 26250 | 0.7280 | 0.9117 |
0.0 | 36.0 | 27000 | 0.8236 | 0.9017 |
0.0068 | 37.0 | 27750 | 0.7886 | 0.92 |
0.0 | 38.0 | 28500 | 0.8302 | 0.9017 |
0.0 | 39.0 | 29250 | 0.8589 | 0.9067 |
0.0 | 40.0 | 30000 | 0.8152 | 0.9017 |
0.0 | 41.0 | 30750 | 0.8501 | 0.905 |
0.0 | 42.0 | 31500 | 0.8563 | 0.91 |
0.0 | 43.0 | 32250 | 0.7690 | 0.9117 |
0.0 | 44.0 | 33000 | 0.8007 | 0.9083 |
0.0 | 45.0 | 33750 | 0.8622 | 0.9033 |
0.0001 | 46.0 | 34500 | 0.8624 | 0.905 |
0.0 | 47.0 | 35250 | 0.8665 | 0.9067 |
0.0 | 48.0 | 36000 | 0.8739 | 0.9067 |
0.0 | 49.0 | 36750 | 0.8825 | 0.9067 |
0.0 | 50.0 | 37500 | 0.8836 | 0.905 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for hkivancoral/smids_10x_beit_large_adamax_001_fold5
Base model
microsoft/beit-large-patch16-224