hkivancoral's picture
End of training
c893c56
|
raw
history blame
4.88 kB
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_adamax_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9183333333333333

smids_10x_deit_small_adamax_00001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8187
  • Accuracy: 0.9183

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2585 1.0 750 0.2681 0.8983
0.2105 2.0 1500 0.2490 0.9167
0.0786 3.0 2250 0.2625 0.9167
0.0736 4.0 3000 0.2826 0.9133
0.0688 5.0 3750 0.3568 0.91
0.0468 6.0 4500 0.4349 0.9083
0.0289 7.0 5250 0.4645 0.9183
0.0394 8.0 6000 0.5300 0.9183
0.0012 9.0 6750 0.5842 0.92
0.0139 10.0 7500 0.6285 0.915
0.0002 11.0 8250 0.6464 0.9217
0.0001 12.0 9000 0.6757 0.9133
0.0 13.0 9750 0.7480 0.9167
0.0001 14.0 10500 0.7033 0.92
0.0 15.0 11250 0.7525 0.9133
0.0 16.0 12000 0.7472 0.915
0.0 17.0 12750 0.7380 0.92
0.0 18.0 13500 0.7432 0.9183
0.0 19.0 14250 0.7438 0.9217
0.0 20.0 15000 0.7615 0.92
0.0 21.0 15750 0.7581 0.9233
0.0 22.0 16500 0.7753 0.92
0.0 23.0 17250 0.7758 0.92
0.0 24.0 18000 0.7745 0.9217
0.0 25.0 18750 0.7780 0.9233
0.0 26.0 19500 0.7763 0.9217
0.0 27.0 20250 0.7839 0.9183
0.0 28.0 21000 0.7914 0.9183
0.0 29.0 21750 0.7935 0.92
0.0 30.0 22500 0.8320 0.9117
0.0 31.0 23250 0.8021 0.9183
0.0 32.0 24000 0.8041 0.9217
0.0 33.0 24750 0.8030 0.9167
0.0 34.0 25500 0.8170 0.9133
0.0 35.0 26250 0.8237 0.915
0.0 36.0 27000 0.8072 0.9167
0.0 37.0 27750 0.8249 0.915
0.0 38.0 28500 0.8116 0.9167
0.0 39.0 29250 0.8160 0.9217
0.0 40.0 30000 0.8158 0.92
0.0 41.0 30750 0.8164 0.92
0.0 42.0 31500 0.8163 0.92
0.0 43.0 32250 0.8169 0.92
0.0 44.0 33000 0.8174 0.92
0.0 45.0 33750 0.8182 0.92
0.0 46.0 34500 0.8186 0.9183
0.0 47.0 35250 0.8185 0.92
0.0 48.0 36000 0.8187 0.92
0.0 49.0 36750 0.8181 0.9183
0.0 50.0 37500 0.8187 0.9183

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2