hkivancoral's picture
End of training
f83f048
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_adamax_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8733333333333333

smids_10x_deit_small_adamax_001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6552
  • Accuracy: 0.8733

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2966 1.0 750 0.3694 0.8683
0.2339 2.0 1500 0.4363 0.8417
0.2355 3.0 2250 0.4010 0.8633
0.1515 4.0 3000 0.4419 0.8767
0.2106 5.0 3750 0.4830 0.8683
0.1439 6.0 4500 0.4916 0.8683
0.0791 7.0 5250 0.5811 0.875
0.077 8.0 6000 0.7477 0.8617
0.0484 9.0 6750 0.9268 0.8383
0.0478 10.0 7500 0.8560 0.855
0.0454 11.0 8250 0.7616 0.8733
0.0414 12.0 9000 0.8591 0.8617
0.0224 13.0 9750 0.8231 0.8833
0.0062 14.0 10500 0.9264 0.8717
0.004 15.0 11250 0.8932 0.8783
0.0299 16.0 12000 0.8030 0.8733
0.0268 17.0 12750 0.8616 0.88
0.0071 18.0 13500 0.9511 0.8767
0.0023 19.0 14250 0.9282 0.8783
0.008 20.0 15000 1.1898 0.855
0.0085 21.0 15750 1.0698 0.8683
0.0003 22.0 16500 1.1571 0.8633
0.0004 23.0 17250 1.1256 0.8783
0.0035 24.0 18000 1.2671 0.8633
0.0 25.0 18750 1.1579 0.8683
0.002 26.0 19500 1.2159 0.87
0.0001 27.0 20250 1.2282 0.8717
0.0 28.0 21000 1.2713 0.8683
0.0 29.0 21750 1.3150 0.8683
0.0 30.0 22500 1.2639 0.8733
0.0 31.0 23250 1.4238 0.865
0.0 32.0 24000 1.3138 0.8717
0.0 33.0 24750 1.4236 0.8733
0.0 34.0 25500 1.4930 0.865
0.0 35.0 26250 1.4369 0.87
0.0 36.0 27000 1.4573 0.8667
0.0 37.0 27750 1.4567 0.8717
0.0 38.0 28500 1.4973 0.8767
0.0 39.0 29250 1.5427 0.8667
0.0 40.0 30000 1.5656 0.8717
0.0 41.0 30750 1.5787 0.8717
0.0 42.0 31500 1.5845 0.87
0.0 43.0 32250 1.5904 0.8717
0.0 44.0 33000 1.5995 0.8717
0.0 45.0 33750 1.6192 0.8717
0.0 46.0 34500 1.6307 0.8717
0.0 47.0 35250 1.6406 0.8733
0.0 48.0 36000 1.6477 0.8733
0.0 49.0 36750 1.6529 0.8733
0.0 50.0 37500 1.6552 0.8733

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2