hkivancoral's picture
End of training
c650ab0
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_rms_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8951747088186356

smids_10x_deit_small_rms_00001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1223
  • Accuracy: 0.8952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2125 1.0 750 0.2971 0.8636
0.1007 2.0 1500 0.3569 0.8902
0.033 3.0 2250 0.4786 0.8852
0.0414 4.0 3000 0.6308 0.8719
0.0169 5.0 3750 0.7881 0.8769
0.0209 6.0 4500 0.8756 0.8802
0.0232 7.0 5250 0.7942 0.8785
0.0001 8.0 6000 0.8024 0.8885
0.0037 9.0 6750 0.9766 0.8852
0.0663 10.0 7500 0.9288 0.8785
0.0416 11.0 8250 1.0051 0.8835
0.0257 12.0 9000 1.1036 0.8752
0.0003 13.0 9750 0.9284 0.8835
0.0007 14.0 10500 0.9766 0.8752
0.0009 15.0 11250 1.0060 0.8869
0.024 16.0 12000 0.9566 0.8918
0.0002 17.0 12750 0.9308 0.8985
0.0226 18.0 13500 0.9878 0.8952
0.0002 19.0 14250 1.0344 0.8802
0.0 20.0 15000 1.0012 0.8902
0.0 21.0 15750 1.0757 0.8852
0.0197 22.0 16500 1.1327 0.8918
0.0059 23.0 17250 1.1959 0.8785
0.014 24.0 18000 0.9244 0.8918
0.0 25.0 18750 1.0134 0.8952
0.0001 26.0 19500 1.2273 0.8735
0.0081 27.0 20250 1.2216 0.8735
0.0 28.0 21000 1.1304 0.8769
0.0 29.0 21750 0.9499 0.8902
0.0 30.0 22500 1.0368 0.8885
0.0 31.0 23250 1.0392 0.8852
0.0038 32.0 24000 1.2288 0.8835
0.0 33.0 24750 1.1678 0.8952
0.0 34.0 25500 1.0162 0.8918
0.0 35.0 26250 1.0770 0.8918
0.0 36.0 27000 1.0678 0.8902
0.0067 37.0 27750 1.0739 0.8935
0.0 38.0 28500 1.1577 0.8935
0.0 39.0 29250 1.1277 0.8935
0.0 40.0 30000 1.1396 0.8918
0.0 41.0 30750 1.1296 0.8952
0.0 42.0 31500 1.1324 0.8935
0.0 43.0 32250 1.1390 0.8918
0.0 44.0 33000 1.1307 0.8952
0.0025 45.0 33750 1.1302 0.8918
0.0 46.0 34500 1.1293 0.8935
0.0 47.0 35250 1.1264 0.8935
0.0 48.0 36000 1.1267 0.8952
0.0 49.0 36750 1.1233 0.8952
0.0 50.0 37500 1.1223 0.8952

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2