hkivancoral's picture
End of training
0ad8106
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_rms_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9166666666666666

smids_10x_deit_small_rms_00001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9311
  • Accuracy: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1779 1.0 750 0.2473 0.905
0.139 2.0 1500 0.3262 0.8817
0.0937 3.0 2250 0.2997 0.9133
0.0255 4.0 3000 0.4034 0.9033
0.0426 5.0 3750 0.4840 0.9133
0.0099 6.0 4500 0.7148 0.9017
0.0272 7.0 5250 0.7135 0.9
0.0013 8.0 6000 0.7156 0.91
0.0252 9.0 6750 0.7066 0.9
0.0 10.0 7500 0.7258 0.91
0.0281 11.0 8250 0.8120 0.8967
0.0 12.0 9000 0.7428 0.91
0.0001 13.0 9750 0.7455 0.9183
0.0272 14.0 10500 0.7891 0.92
0.0 15.0 11250 0.8803 0.8967
0.0 16.0 12000 0.8867 0.9
0.0025 17.0 12750 0.8600 0.9067
0.0 18.0 13500 0.7993 0.9183
0.0 19.0 14250 0.8779 0.9133
0.0 20.0 15000 0.8996 0.9117
0.0004 21.0 15750 0.9765 0.8917
0.0157 22.0 16500 0.7715 0.92
0.0 23.0 17250 0.7227 0.91
0.0 24.0 18000 0.7725 0.9167
0.0 25.0 18750 0.8320 0.9117
0.0004 26.0 19500 0.9795 0.8967
0.0 27.0 20250 0.8537 0.9183
0.0 28.0 21000 0.8796 0.9033
0.0 29.0 21750 0.8896 0.9067
0.0035 30.0 22500 0.9700 0.9033
0.0 31.0 23250 0.8273 0.9117
0.0 32.0 24000 0.8778 0.91
0.0 33.0 24750 0.8576 0.9117
0.0 34.0 25500 0.8235 0.9167
0.0 35.0 26250 0.8389 0.9133
0.0 36.0 27000 0.8611 0.9133
0.0052 37.0 27750 0.9201 0.91
0.0 38.0 28500 0.9394 0.9117
0.0 39.0 29250 0.9985 0.91
0.0 40.0 30000 0.9682 0.9133
0.0 41.0 30750 0.9333 0.915
0.0 42.0 31500 0.9270 0.9167
0.0 43.0 32250 0.9299 0.915
0.0 44.0 33000 0.9241 0.9133
0.0 45.0 33750 0.9269 0.9133
0.0 46.0 34500 0.9286 0.915
0.0 47.0 35250 0.9293 0.915
0.0 48.0 36000 0.9293 0.915
0.0 49.0 36750 0.9307 0.915
0.0 50.0 37500 0.9311 0.9167

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2