hkivancoral's picture
End of training
c6c5165
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_rms_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.905

smids_10x_deit_small_rms_0001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0751
  • Accuracy: 0.905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2232 1.0 750 0.2644 0.9033
0.1749 2.0 1500 0.3888 0.87
0.0708 3.0 2250 0.3860 0.9083
0.0864 4.0 3000 0.4018 0.9017
0.027 5.0 3750 0.5540 0.905
0.0152 6.0 4500 0.5713 0.9133
0.0637 7.0 5250 0.5356 0.9017
0.0914 8.0 6000 0.5134 0.9117
0.0042 9.0 6750 0.5226 0.905
0.0385 10.0 7500 0.6176 0.9067
0.0198 11.0 8250 0.7633 0.89
0.0448 12.0 9000 0.7337 0.8783
0.0021 13.0 9750 0.6859 0.8917
0.0019 14.0 10500 0.7372 0.8933
0.0006 15.0 11250 0.7460 0.885
0.0195 16.0 12000 0.7805 0.8933
0.0202 17.0 12750 0.8243 0.895
0.016 18.0 13500 0.7845 0.89
0.0037 19.0 14250 0.7538 0.8883
0.0001 20.0 15000 0.6925 0.8967
0.0006 21.0 15750 0.8393 0.8933
0.0 22.0 16500 0.7236 0.9
0.0024 23.0 17250 0.8639 0.885
0.0014 24.0 18000 0.8799 0.8917
0.0236 25.0 18750 0.6893 0.9033
0.0001 26.0 19500 0.7435 0.9033
0.0001 27.0 20250 0.6829 0.89
0.0194 28.0 21000 0.8267 0.8967
0.0002 29.0 21750 0.8000 0.8983
0.0001 30.0 22500 0.8336 0.89
0.0 31.0 23250 0.8017 0.9
0.0 32.0 24000 0.8257 0.9117
0.0 33.0 24750 0.8456 0.905
0.0 34.0 25500 0.7637 0.91
0.0 35.0 26250 0.8426 0.9067
0.0219 36.0 27000 0.8594 0.9067
0.0 37.0 27750 0.8437 0.9083
0.0 38.0 28500 0.9026 0.9117
0.0 39.0 29250 0.9566 0.9067
0.0 40.0 30000 0.9200 0.915
0.0 41.0 30750 0.9067 0.92
0.0 42.0 31500 0.9289 0.91
0.0 43.0 32250 0.9815 0.91
0.0 44.0 33000 0.9712 0.91
0.0 45.0 33750 1.0254 0.9067
0.0 46.0 34500 1.0353 0.9083
0.0 47.0 35250 1.0450 0.905
0.0 48.0 36000 1.0661 0.905
0.0 49.0 36750 1.0715 0.905
0.0 50.0 37500 1.0751 0.905

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2