hkivancoral's picture
End of training
890baa4
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_rms_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.885

smids_10x_deit_small_rms_0001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4626
  • Accuracy: 0.885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2601 1.0 750 0.3716 0.8583
0.1216 2.0 1500 0.6123 0.855
0.1115 3.0 2250 0.5264 0.8667
0.066 4.0 3000 0.5528 0.8733
0.0447 5.0 3750 0.7645 0.8633
0.0487 6.0 4500 0.8232 0.8767
0.0554 7.0 5250 0.7277 0.865
0.0304 8.0 6000 0.8549 0.8667
0.0413 9.0 6750 0.8526 0.865
0.0142 10.0 7500 1.0441 0.8567
0.0561 11.0 8250 1.0164 0.8633
0.0352 12.0 9000 0.8537 0.875
0.0141 13.0 9750 0.9173 0.8617
0.0343 14.0 10500 1.0250 0.86
0.0048 15.0 11250 0.9231 0.8617
0.0038 16.0 12000 1.1476 0.8617
0.0308 17.0 12750 0.9914 0.885
0.0168 18.0 13500 1.0050 0.8783
0.0001 19.0 14250 1.0610 0.8667
0.0 20.0 15000 1.0251 0.86
0.0232 21.0 15750 1.1692 0.855
0.0026 22.0 16500 0.9562 0.8833
0.0001 23.0 17250 1.0914 0.8733
0.0042 24.0 18000 1.0684 0.8767
0.0 25.0 18750 0.9724 0.8833
0.0001 26.0 19500 1.0636 0.86
0.0001 27.0 20250 1.1239 0.86
0.0015 28.0 21000 1.1692 0.8683
0.0308 29.0 21750 1.1241 0.875
0.0263 30.0 22500 1.0816 0.8867
0.0 31.0 23250 0.9644 0.8867
0.0 32.0 24000 1.1653 0.875
0.0 33.0 24750 1.2370 0.8833
0.0117 34.0 25500 1.3585 0.8767
0.0014 35.0 26250 1.1826 0.885
0.0 36.0 27000 1.2030 0.8867
0.0 37.0 27750 1.4012 0.8717
0.0 38.0 28500 1.3242 0.8717
0.0 39.0 29250 1.2640 0.8833
0.0 40.0 30000 1.3613 0.8817
0.0 41.0 30750 1.3467 0.8883
0.0 42.0 31500 1.3505 0.8917
0.0 43.0 32250 1.3990 0.8867
0.0 44.0 33000 1.4081 0.8917
0.0 45.0 33750 1.4275 0.8883
0.0 46.0 34500 1.4373 0.8867
0.0 47.0 35250 1.4471 0.8867
0.0 48.0 36000 1.4562 0.885
0.0 49.0 36750 1.4611 0.885
0.0 50.0 37500 1.4626 0.885

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2