hkivancoral's picture
End of training
882c021
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_rms_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8983333333333333

smids_10x_deit_small_rms_0001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1181
  • Accuracy: 0.8983

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1916 1.0 750 0.2932 0.8983
0.1713 2.0 1500 0.3029 0.9083
0.1109 3.0 2250 0.5067 0.8767
0.0732 4.0 3000 0.4780 0.91
0.102 5.0 3750 0.4476 0.8983
0.0951 6.0 4500 0.5447 0.9017
0.0348 7.0 5250 0.5626 0.915
0.0144 8.0 6000 0.5893 0.9133
0.0592 9.0 6750 0.5568 0.91
0.0154 10.0 7500 0.5698 0.9017
0.0271 11.0 8250 0.6256 0.8983
0.0176 12.0 9000 0.7391 0.8917
0.012 13.0 9750 0.6256 0.8967
0.0094 14.0 10500 0.7473 0.895
0.0301 15.0 11250 0.6066 0.905
0.0069 16.0 12000 0.6970 0.9
0.0131 17.0 12750 0.6902 0.895
0.0022 18.0 13500 0.7962 0.8833
0.0162 19.0 14250 0.8033 0.8967
0.0045 20.0 15000 0.7612 0.8933
0.0063 21.0 15750 0.7939 0.9
0.0002 22.0 16500 0.7612 0.8933
0.0161 23.0 17250 0.8161 0.8867
0.0001 24.0 18000 0.8196 0.8933
0.038 25.0 18750 0.8702 0.8883
0.0257 26.0 19500 0.7862 0.8983
0.0004 27.0 20250 0.8138 0.8983
0.0001 28.0 21000 0.8830 0.905
0.0003 29.0 21750 1.0169 0.89
0.016 30.0 22500 0.8531 0.8883
0.0027 31.0 23250 0.9699 0.895
0.0379 32.0 24000 1.0313 0.89
0.0307 33.0 24750 0.8698 0.905
0.0 34.0 25500 0.8949 0.9017
0.0 35.0 26250 0.9260 0.8917
0.0 36.0 27000 0.9677 0.89
0.0036 37.0 27750 1.0175 0.9017
0.0 38.0 28500 1.0579 0.8967
0.0003 39.0 29250 1.1044 0.8917
0.0 40.0 30000 1.0357 0.895
0.0 41.0 30750 1.0321 0.9
0.0 42.0 31500 1.0802 0.895
0.0 43.0 32250 1.1064 0.895
0.0 44.0 33000 1.1154 0.9017
0.0 45.0 33750 1.1069 0.9017
0.0 46.0 34500 1.1200 0.895
0.0 47.0 35250 1.1205 0.8967
0.0 48.0 36000 1.1169 0.8983
0.0 49.0 36750 1.1164 0.8983
0.0 50.0 37500 1.1181 0.8983

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2