metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_10x_deit_small_rms_001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7166666666666667
smids_10x_deit_small_rms_001_fold5
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6302
- Accuracy: 0.7167
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1023 | 1.0 | 750 | 1.0958 | 0.34 |
0.9402 | 2.0 | 1500 | 0.9088 | 0.5033 |
0.9044 | 3.0 | 2250 | 0.8761 | 0.5383 |
0.8247 | 4.0 | 3000 | 0.8349 | 0.5233 |
0.7854 | 5.0 | 3750 | 0.8127 | 0.5633 |
0.7771 | 6.0 | 4500 | 0.8860 | 0.5383 |
0.773 | 7.0 | 5250 | 0.8230 | 0.575 |
0.8024 | 8.0 | 6000 | 0.7956 | 0.5883 |
0.8797 | 9.0 | 6750 | 0.8015 | 0.6183 |
0.7815 | 10.0 | 7500 | 0.7866 | 0.6083 |
0.7914 | 11.0 | 8250 | 0.7547 | 0.6267 |
0.7411 | 12.0 | 9000 | 0.7615 | 0.59 |
0.7343 | 13.0 | 9750 | 0.7214 | 0.6617 |
0.7764 | 14.0 | 10500 | 0.7295 | 0.6717 |
0.7555 | 15.0 | 11250 | 0.7012 | 0.6617 |
0.7373 | 16.0 | 12000 | 0.7948 | 0.6217 |
0.6985 | 17.0 | 12750 | 0.7396 | 0.6267 |
0.7821 | 18.0 | 13500 | 0.7384 | 0.66 |
0.7914 | 19.0 | 14250 | 0.7821 | 0.635 |
0.7863 | 20.0 | 15000 | 0.7254 | 0.655 |
0.6932 | 21.0 | 15750 | 0.7242 | 0.6633 |
0.6744 | 22.0 | 16500 | 0.7009 | 0.6817 |
0.6983 | 23.0 | 17250 | 0.6866 | 0.7133 |
0.6779 | 24.0 | 18000 | 0.6963 | 0.6983 |
0.6937 | 25.0 | 18750 | 0.6942 | 0.6817 |
0.6943 | 26.0 | 19500 | 0.6864 | 0.695 |
0.6231 | 27.0 | 20250 | 0.7126 | 0.665 |
0.6418 | 28.0 | 21000 | 0.6620 | 0.6983 |
0.72 | 29.0 | 21750 | 0.6656 | 0.7017 |
0.7042 | 30.0 | 22500 | 0.6697 | 0.6867 |
0.754 | 31.0 | 23250 | 0.6511 | 0.7033 |
0.6987 | 32.0 | 24000 | 0.6765 | 0.69 |
0.7166 | 33.0 | 24750 | 0.6802 | 0.7083 |
0.6725 | 34.0 | 25500 | 0.6763 | 0.7033 |
0.6612 | 35.0 | 26250 | 0.6382 | 0.7083 |
0.6967 | 36.0 | 27000 | 0.6445 | 0.705 |
0.6491 | 37.0 | 27750 | 0.6443 | 0.7133 |
0.7274 | 38.0 | 28500 | 0.6314 | 0.7333 |
0.6904 | 39.0 | 29250 | 0.6429 | 0.7267 |
0.6516 | 40.0 | 30000 | 0.6385 | 0.7167 |
0.6647 | 41.0 | 30750 | 0.6386 | 0.7 |
0.666 | 42.0 | 31500 | 0.6656 | 0.695 |
0.6901 | 43.0 | 32250 | 0.6568 | 0.715 |
0.6021 | 44.0 | 33000 | 0.6375 | 0.7117 |
0.6467 | 45.0 | 33750 | 0.6267 | 0.7117 |
0.6249 | 46.0 | 34500 | 0.6374 | 0.71 |
0.6161 | 47.0 | 35250 | 0.6354 | 0.71 |
0.6534 | 48.0 | 36000 | 0.6396 | 0.715 |
0.6031 | 49.0 | 36750 | 0.6326 | 0.7117 |
0.6145 | 50.0 | 37500 | 0.6302 | 0.7167 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2