hkivancoral's picture
End of training
856bd99
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_sgd_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.835

smids_10x_deit_small_sgd_0001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4025
  • Accuracy: 0.835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.999 1.0 750 1.0177 0.4867
0.9125 2.0 1500 0.9538 0.56
0.8354 3.0 2250 0.8848 0.64
0.7909 4.0 3000 0.8172 0.685
0.7315 5.0 3750 0.7535 0.7183
0.6641 6.0 4500 0.7023 0.7433
0.61 7.0 5250 0.6582 0.755
0.5883 8.0 6000 0.6232 0.7783
0.6057 9.0 6750 0.5936 0.79
0.5434 10.0 7500 0.5693 0.795
0.5298 11.0 8250 0.5500 0.7917
0.4881 12.0 9000 0.5324 0.8
0.5014 13.0 9750 0.5180 0.8
0.4862 14.0 10500 0.5060 0.8083
0.4712 15.0 11250 0.4949 0.81
0.4371 16.0 12000 0.4864 0.8117
0.4626 17.0 12750 0.4789 0.815
0.4294 18.0 13500 0.4706 0.815
0.4498 19.0 14250 0.4650 0.815
0.425 20.0 15000 0.4594 0.815
0.4212 21.0 15750 0.4532 0.8167
0.4517 22.0 16500 0.4489 0.82
0.4104 23.0 17250 0.4443 0.8167
0.4051 24.0 18000 0.4407 0.82
0.4019 25.0 18750 0.4371 0.8217
0.3884 26.0 19500 0.4338 0.825
0.3154 27.0 20250 0.4302 0.825
0.3994 28.0 21000 0.4273 0.8283
0.4061 29.0 21750 0.4246 0.83
0.4059 30.0 22500 0.4225 0.8283
0.3637 31.0 23250 0.4202 0.8267
0.3501 32.0 24000 0.4181 0.8283
0.4209 33.0 24750 0.4163 0.8317
0.3255 34.0 25500 0.4145 0.8317
0.3933 35.0 26250 0.4127 0.8317
0.3766 36.0 27000 0.4115 0.8317
0.3145 37.0 27750 0.4102 0.8317
0.3874 38.0 28500 0.4090 0.83
0.3898 39.0 29250 0.4079 0.83
0.365 40.0 30000 0.4069 0.8317
0.3728 41.0 30750 0.4059 0.8317
0.3865 42.0 31500 0.4051 0.8317
0.3813 43.0 32250 0.4045 0.8317
0.3607 44.0 33000 0.4040 0.8317
0.3955 45.0 33750 0.4034 0.8333
0.3317 46.0 34500 0.4031 0.835
0.4022 47.0 35250 0.4028 0.835
0.3888 48.0 36000 0.4026 0.835
0.3745 49.0 36750 0.4025 0.835
0.3 50.0 37500 0.4025 0.835

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2