hkivancoral's picture
End of training
a85e255
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_sgd_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9015025041736227

smids_10x_deit_small_sgd_001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2862
  • Accuracy: 0.9015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5539 1.0 751 0.5690 0.7763
0.3867 2.0 1502 0.4456 0.8314
0.3236 3.0 2253 0.3927 0.8497
0.259 4.0 3004 0.3726 0.8514
0.3099 5.0 3755 0.3487 0.8598
0.2986 6.0 4506 0.3416 0.8715
0.2728 7.0 5257 0.3260 0.8731
0.2249 8.0 6008 0.3188 0.8781
0.2673 9.0 6759 0.3155 0.8848
0.2491 10.0 7510 0.3089 0.8848
0.2349 11.0 8261 0.3099 0.8881
0.2513 12.0 9012 0.3016 0.8898
0.2098 13.0 9763 0.3061 0.8898
0.1606 14.0 10514 0.3022 0.8881
0.1914 15.0 11265 0.2955 0.8881
0.2039 16.0 12016 0.2953 0.8898
0.2821 17.0 12767 0.2940 0.8965
0.1703 18.0 13518 0.2962 0.8915
0.2178 19.0 14269 0.2905 0.8965
0.1883 20.0 15020 0.2902 0.8998
0.13 21.0 15771 0.2893 0.8948
0.1613 22.0 16522 0.2875 0.8982
0.1627 23.0 17273 0.2879 0.8948
0.2201 24.0 18024 0.2853 0.8998
0.2067 25.0 18775 0.2893 0.8965
0.1982 26.0 19526 0.2860 0.8982
0.1922 27.0 20277 0.2854 0.8998
0.2065 28.0 21028 0.2873 0.8948
0.1663 29.0 21779 0.2836 0.9032
0.1637 30.0 22530 0.2824 0.9032
0.1216 31.0 23281 0.2840 0.8998
0.2073 32.0 24032 0.2863 0.9065
0.1694 33.0 24783 0.2888 0.8965
0.1525 34.0 25534 0.2882 0.8982
0.1562 35.0 26285 0.2864 0.9032
0.1612 36.0 27036 0.2821 0.9032
0.2418 37.0 27787 0.2832 0.9015
0.138 38.0 28538 0.2859 0.9032
0.0832 39.0 29289 0.2853 0.8998
0.1792 40.0 30040 0.2866 0.9015
0.1296 41.0 30791 0.2848 0.9032
0.1436 42.0 31542 0.2863 0.9032
0.1676 43.0 32293 0.2864 0.9015
0.129 44.0 33044 0.2863 0.9015
0.1268 45.0 33795 0.2864 0.9015
0.182 46.0 34546 0.2870 0.8998
0.0802 47.0 35297 0.2872 0.9015
0.1369 48.0 36048 0.2866 0.9015
0.1294 49.0 36799 0.2861 0.9015
0.1488 50.0 37550 0.2862 0.9015

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2