hkivancoral's picture
End of training
31c659b
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_sgd_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8685524126455907

smids_10x_deit_small_sgd_001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3138
  • Accuracy: 0.8686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5167 1.0 750 0.5666 0.7737
0.3469 2.0 1500 0.4420 0.8136
0.3157 3.0 2250 0.3924 0.8336
0.3366 4.0 3000 0.3644 0.8469
0.2937 5.0 3750 0.3504 0.8569
0.2683 6.0 4500 0.3342 0.8602
0.2786 7.0 5250 0.3236 0.8636
0.2458 8.0 6000 0.3168 0.8619
0.2409 9.0 6750 0.3122 0.8586
0.2266 10.0 7500 0.3079 0.8652
0.2724 11.0 8250 0.3033 0.8586
0.2793 12.0 9000 0.3021 0.8586
0.2082 13.0 9750 0.3016 0.8619
0.152 14.0 10500 0.3001 0.8669
0.1732 15.0 11250 0.2977 0.8636
0.1629 16.0 12000 0.2993 0.8636
0.1493 17.0 12750 0.2962 0.8669
0.1762 18.0 13500 0.2975 0.8669
0.1954 19.0 14250 0.2989 0.8735
0.1979 20.0 15000 0.2956 0.8636
0.1452 21.0 15750 0.2997 0.8636
0.1414 22.0 16500 0.2986 0.8636
0.131 23.0 17250 0.2989 0.8652
0.1633 24.0 18000 0.2990 0.8652
0.1429 25.0 18750 0.3003 0.8636
0.2373 26.0 19500 0.3030 0.8735
0.1884 27.0 20250 0.3051 0.8702
0.1254 28.0 21000 0.3031 0.8602
0.1804 29.0 21750 0.3034 0.8719
0.1437 30.0 22500 0.3048 0.8686
0.1608 31.0 23250 0.3012 0.8669
0.1618 32.0 24000 0.3040 0.8652
0.1429 33.0 24750 0.3043 0.8602
0.1612 34.0 25500 0.3075 0.8652
0.1719 35.0 26250 0.3075 0.8619
0.1633 36.0 27000 0.3103 0.8669
0.1619 37.0 27750 0.3071 0.8636
0.1665 38.0 28500 0.3086 0.8669
0.1293 39.0 29250 0.3088 0.8669
0.1641 40.0 30000 0.3125 0.8719
0.1466 41.0 30750 0.3125 0.8702
0.1482 42.0 31500 0.3110 0.8652
0.1022 43.0 32250 0.3124 0.8652
0.1075 44.0 33000 0.3116 0.8669
0.1257 45.0 33750 0.3131 0.8669
0.1217 46.0 34500 0.3119 0.8669
0.1431 47.0 35250 0.3120 0.8686
0.1086 48.0 36000 0.3131 0.8686
0.1041 49.0 36750 0.3136 0.8686
0.1201 50.0 37500 0.3138 0.8686

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2