metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_10x_deit_small_sgd_001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8685524126455907
smids_10x_deit_small_sgd_001_fold2
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3138
- Accuracy: 0.8686
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5167 | 1.0 | 750 | 0.5666 | 0.7737 |
0.3469 | 2.0 | 1500 | 0.4420 | 0.8136 |
0.3157 | 3.0 | 2250 | 0.3924 | 0.8336 |
0.3366 | 4.0 | 3000 | 0.3644 | 0.8469 |
0.2937 | 5.0 | 3750 | 0.3504 | 0.8569 |
0.2683 | 6.0 | 4500 | 0.3342 | 0.8602 |
0.2786 | 7.0 | 5250 | 0.3236 | 0.8636 |
0.2458 | 8.0 | 6000 | 0.3168 | 0.8619 |
0.2409 | 9.0 | 6750 | 0.3122 | 0.8586 |
0.2266 | 10.0 | 7500 | 0.3079 | 0.8652 |
0.2724 | 11.0 | 8250 | 0.3033 | 0.8586 |
0.2793 | 12.0 | 9000 | 0.3021 | 0.8586 |
0.2082 | 13.0 | 9750 | 0.3016 | 0.8619 |
0.152 | 14.0 | 10500 | 0.3001 | 0.8669 |
0.1732 | 15.0 | 11250 | 0.2977 | 0.8636 |
0.1629 | 16.0 | 12000 | 0.2993 | 0.8636 |
0.1493 | 17.0 | 12750 | 0.2962 | 0.8669 |
0.1762 | 18.0 | 13500 | 0.2975 | 0.8669 |
0.1954 | 19.0 | 14250 | 0.2989 | 0.8735 |
0.1979 | 20.0 | 15000 | 0.2956 | 0.8636 |
0.1452 | 21.0 | 15750 | 0.2997 | 0.8636 |
0.1414 | 22.0 | 16500 | 0.2986 | 0.8636 |
0.131 | 23.0 | 17250 | 0.2989 | 0.8652 |
0.1633 | 24.0 | 18000 | 0.2990 | 0.8652 |
0.1429 | 25.0 | 18750 | 0.3003 | 0.8636 |
0.2373 | 26.0 | 19500 | 0.3030 | 0.8735 |
0.1884 | 27.0 | 20250 | 0.3051 | 0.8702 |
0.1254 | 28.0 | 21000 | 0.3031 | 0.8602 |
0.1804 | 29.0 | 21750 | 0.3034 | 0.8719 |
0.1437 | 30.0 | 22500 | 0.3048 | 0.8686 |
0.1608 | 31.0 | 23250 | 0.3012 | 0.8669 |
0.1618 | 32.0 | 24000 | 0.3040 | 0.8652 |
0.1429 | 33.0 | 24750 | 0.3043 | 0.8602 |
0.1612 | 34.0 | 25500 | 0.3075 | 0.8652 |
0.1719 | 35.0 | 26250 | 0.3075 | 0.8619 |
0.1633 | 36.0 | 27000 | 0.3103 | 0.8669 |
0.1619 | 37.0 | 27750 | 0.3071 | 0.8636 |
0.1665 | 38.0 | 28500 | 0.3086 | 0.8669 |
0.1293 | 39.0 | 29250 | 0.3088 | 0.8669 |
0.1641 | 40.0 | 30000 | 0.3125 | 0.8719 |
0.1466 | 41.0 | 30750 | 0.3125 | 0.8702 |
0.1482 | 42.0 | 31500 | 0.3110 | 0.8652 |
0.1022 | 43.0 | 32250 | 0.3124 | 0.8652 |
0.1075 | 44.0 | 33000 | 0.3116 | 0.8669 |
0.1257 | 45.0 | 33750 | 0.3131 | 0.8669 |
0.1217 | 46.0 | 34500 | 0.3119 | 0.8669 |
0.1431 | 47.0 | 35250 | 0.3120 | 0.8686 |
0.1086 | 48.0 | 36000 | 0.3131 | 0.8686 |
0.1041 | 49.0 | 36750 | 0.3136 | 0.8686 |
0.1201 | 50.0 | 37500 | 0.3138 | 0.8686 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2