hkivancoral's picture
End of training
cd7f543
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_small_sgd_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8766666666666667

smids_10x_deit_small_sgd_001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3291
  • Accuracy: 0.8767

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5469 1.0 750 0.5533 0.7983
0.4148 2.0 1500 0.4326 0.8367
0.3982 3.0 2250 0.3912 0.8467
0.355 4.0 3000 0.3693 0.8533
0.3032 5.0 3750 0.3569 0.8583
0.2345 6.0 4500 0.3466 0.8617
0.2053 7.0 5250 0.3412 0.865
0.2443 8.0 6000 0.3381 0.8633
0.259 9.0 6750 0.3314 0.875
0.2146 10.0 7500 0.3275 0.8717
0.2301 11.0 8250 0.3262 0.8733
0.298 12.0 9000 0.3264 0.8733
0.2031 13.0 9750 0.3234 0.8783
0.1941 14.0 10500 0.3276 0.8783
0.1822 15.0 11250 0.3209 0.88
0.2209 16.0 12000 0.3226 0.8767
0.1294 17.0 12750 0.3179 0.8817
0.1726 18.0 13500 0.3224 0.88
0.2222 19.0 14250 0.3196 0.8833
0.1604 20.0 15000 0.3199 0.8817
0.1742 21.0 15750 0.3204 0.8783
0.1599 22.0 16500 0.3188 0.88
0.1753 23.0 17250 0.3189 0.8817
0.1975 24.0 18000 0.3189 0.8817
0.1797 25.0 18750 0.3190 0.8817
0.1646 26.0 19500 0.3244 0.8817
0.1585 27.0 20250 0.3244 0.885
0.1303 28.0 21000 0.3225 0.8817
0.1144 29.0 21750 0.3207 0.8817
0.1409 30.0 22500 0.3230 0.8817
0.1303 31.0 23250 0.3219 0.8833
0.1405 32.0 24000 0.3260 0.8817
0.1503 33.0 24750 0.3248 0.88
0.1402 34.0 25500 0.3257 0.8817
0.1266 35.0 26250 0.3227 0.88
0.1495 36.0 27000 0.3271 0.8817
0.1021 37.0 27750 0.3248 0.8833
0.1616 38.0 28500 0.3242 0.885
0.158 39.0 29250 0.3254 0.88
0.1668 40.0 30000 0.3256 0.8833
0.1276 41.0 30750 0.3297 0.88
0.1072 42.0 31500 0.3307 0.88
0.1457 43.0 32250 0.3289 0.8783
0.1691 44.0 33000 0.3278 0.8817
0.1442 45.0 33750 0.3288 0.88
0.1231 46.0 34500 0.3279 0.88
0.1011 47.0 35250 0.3276 0.8767
0.1059 48.0 36000 0.3287 0.8767
0.1263 49.0 36750 0.3292 0.8767
0.1053 50.0 37500 0.3291 0.8767

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2