hkivancoral's picture
End of training
d7c8b09
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_adamax_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9115191986644408

smids_10x_deit_tiny_adamax_00001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8545
  • Accuracy: 0.9115

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2768 1.0 751 0.3271 0.8681
0.2559 2.0 1502 0.2686 0.8932
0.1723 3.0 2253 0.2752 0.8932
0.1343 4.0 3004 0.2784 0.8898
0.1389 5.0 3755 0.2896 0.8965
0.1143 6.0 4506 0.3456 0.8881
0.0797 7.0 5257 0.3441 0.8865
0.0583 8.0 6008 0.3964 0.8998
0.0472 9.0 6759 0.4458 0.8915
0.0757 10.0 7510 0.4767 0.8982
0.0191 11.0 8261 0.5147 0.8915
0.031 12.0 9012 0.5873 0.8898
0.0022 13.0 9763 0.6291 0.8982
0.0003 14.0 10514 0.6449 0.9048
0.0014 15.0 11265 0.6651 0.8982
0.0237 16.0 12016 0.7228 0.9015
0.0016 17.0 12767 0.7272 0.8948
0.0001 18.0 13518 0.7560 0.9032
0.0001 19.0 14269 0.7571 0.8982
0.0 20.0 15020 0.7689 0.9048
0.0 21.0 15771 0.7584 0.9048
0.0 22.0 16522 0.7967 0.9032
0.0 23.0 17273 0.7987 0.9065
0.0001 24.0 18024 0.8298 0.9065
0.0 25.0 18775 0.8022 0.9098
0.0 26.0 19526 0.8054 0.9098
0.0 27.0 20277 0.8124 0.9065
0.0 28.0 21028 0.8128 0.9082
0.0194 29.0 21779 0.8361 0.9015
0.0 30.0 22530 0.8316 0.9065
0.0 31.0 23281 0.8255 0.9132
0.0 32.0 24032 0.8225 0.9115
0.0 33.0 24783 0.8294 0.9098
0.0 34.0 25534 0.8377 0.9082
0.0 35.0 26285 0.8477 0.9032
0.0 36.0 27036 0.8439 0.9115
0.0 37.0 27787 0.8492 0.9065
0.0 38.0 28538 0.8435 0.9098
0.0 39.0 29289 0.8490 0.9098
0.0 40.0 30040 0.8482 0.9115
0.0 41.0 30791 0.8506 0.9065
0.0 42.0 31542 0.8515 0.9082
0.0 43.0 32293 0.8517 0.9115
0.0 44.0 33044 0.8525 0.9115
0.0 45.0 33795 0.8550 0.9048
0.0 46.0 34546 0.8557 0.9082
0.0 47.0 35297 0.8547 0.9115
0.0 48.0 36048 0.8545 0.9115
0.0 49.0 36799 0.8544 0.9115
0.0 50.0 37550 0.8545 0.9115

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2