hkivancoral's picture
End of training
ffa1a47
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_adamax_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8716666666666667

smids_10x_deit_tiny_adamax_001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5843
  • Accuracy: 0.8717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3385 1.0 750 0.3848 0.84
0.2692 2.0 1500 0.3830 0.8633
0.2345 3.0 2250 0.4255 0.8617
0.1851 4.0 3000 0.4988 0.8517
0.1806 5.0 3750 0.5032 0.8433
0.1568 6.0 4500 0.5429 0.8633
0.0638 7.0 5250 0.6033 0.855
0.1397 8.0 6000 0.6990 0.845
0.1208 9.0 6750 0.6852 0.8483
0.0667 10.0 7500 0.8743 0.8383
0.0482 11.0 8250 0.7516 0.8667
0.0306 12.0 9000 0.8187 0.8783
0.0125 13.0 9750 0.8525 0.86
0.0512 14.0 10500 1.0441 0.8483
0.0023 15.0 11250 1.0562 0.85
0.0353 16.0 12000 1.1914 0.8583
0.0637 17.0 12750 1.1115 0.8667
0.025 18.0 13500 1.1677 0.865
0.0126 19.0 14250 1.0523 0.8833
0.0 20.0 15000 1.0935 0.8633
0.0359 21.0 15750 1.1791 0.8733
0.0003 22.0 16500 1.0630 0.87
0.0003 23.0 17250 1.0996 0.8667
0.0006 24.0 18000 1.0915 0.8817
0.0001 25.0 18750 1.1484 0.8617
0.0 26.0 19500 1.1656 0.875
0.0179 27.0 20250 1.2101 0.8717
0.0 28.0 21000 1.3179 0.86
0.0 29.0 21750 1.2425 0.8733
0.0 30.0 22500 1.3660 0.87
0.0 31.0 23250 1.3781 0.87
0.0 32.0 24000 1.4541 0.86
0.0003 33.0 24750 1.3447 0.8717
0.0 34.0 25500 1.3846 0.8633
0.0 35.0 26250 1.3907 0.8733
0.0 36.0 27000 1.4240 0.87
0.0 37.0 27750 1.3878 0.8717
0.0 38.0 28500 1.4082 0.87
0.0 39.0 29250 1.4530 0.8717
0.0 40.0 30000 1.4653 0.8717
0.0 41.0 30750 1.4878 0.87
0.0 42.0 31500 1.5011 0.8717
0.0 43.0 32250 1.5107 0.8717
0.0 44.0 33000 1.5209 0.8717
0.0 45.0 33750 1.5429 0.8717
0.0 46.0 34500 1.5577 0.8717
0.0 47.0 35250 1.5684 0.8717
0.0 48.0 36000 1.5772 0.8717
0.0 49.0 36750 1.5824 0.8717
0.0 50.0 37500 1.5843 0.8717

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2