hkivancoral's picture
End of training
536b674
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8666666666666667

smids_1x_deit_small_adamax_00001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6794
  • Accuracy: 0.8667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6229 1.0 75 0.5343 0.7933
0.4114 2.0 150 0.3999 0.8333
0.3246 3.0 225 0.3573 0.835
0.2962 4.0 300 0.3318 0.8633
0.2498 5.0 375 0.3315 0.86
0.1818 6.0 450 0.3035 0.87
0.1932 7.0 525 0.3061 0.875
0.1474 8.0 600 0.3041 0.87
0.0826 9.0 675 0.3169 0.87
0.081 10.0 750 0.3163 0.8667
0.0813 11.0 825 0.3296 0.87
0.0261 12.0 900 0.3349 0.87
0.0464 13.0 975 0.3659 0.8667
0.0215 14.0 1050 0.4099 0.87
0.027 15.0 1125 0.4201 0.87
0.0112 16.0 1200 0.4420 0.8717
0.0162 17.0 1275 0.4669 0.8733
0.016 18.0 1350 0.5089 0.87
0.0103 19.0 1425 0.4963 0.8717
0.0014 20.0 1500 0.5125 0.8733
0.0096 21.0 1575 0.5220 0.8733
0.0069 22.0 1650 0.5718 0.8617
0.0159 23.0 1725 0.5556 0.8717
0.0008 24.0 1800 0.5732 0.8667
0.0352 25.0 1875 0.5727 0.8683
0.0005 26.0 1950 0.5893 0.8683
0.0095 27.0 2025 0.6176 0.8667
0.0202 28.0 2100 0.5996 0.865
0.0236 29.0 2175 0.6069 0.8633
0.0103 30.0 2250 0.6179 0.865
0.0003 31.0 2325 0.6857 0.8633
0.0003 32.0 2400 0.6471 0.8667
0.0077 33.0 2475 0.6466 0.8667
0.0003 34.0 2550 0.6723 0.8633
0.0076 35.0 2625 0.6448 0.865
0.0002 36.0 2700 0.6372 0.87
0.0037 37.0 2775 0.6601 0.87
0.0002 38.0 2850 0.6572 0.8683
0.0002 39.0 2925 0.6720 0.8683
0.0002 40.0 3000 0.6642 0.8683
0.0072 41.0 3075 0.6568 0.8683
0.0002 42.0 3150 0.6668 0.8633
0.0069 43.0 3225 0.6577 0.8683
0.0002 44.0 3300 0.6738 0.8667
0.0042 45.0 3375 0.6742 0.865
0.0002 46.0 3450 0.6815 0.8667
0.0111 47.0 3525 0.6812 0.8667
0.0112 48.0 3600 0.6837 0.8683
0.0002 49.0 3675 0.6809 0.8667
0.0038 50.0 3750 0.6794 0.8667

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0