hkivancoral's picture
End of training
203a140
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_adamax_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9083333333333333

smids_1x_deit_small_adamax_0001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5996
  • Accuracy: 0.9083

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3937 1.0 75 0.3211 0.8633
0.2826 2.0 150 0.3394 0.8733
0.1652 3.0 225 0.2814 0.8967
0.141 4.0 300 0.2984 0.9
0.0291 5.0 375 0.3773 0.9017
0.0153 6.0 450 0.4868 0.8733
0.0215 7.0 525 0.4578 0.9067
0.0108 8.0 600 0.5844 0.875
0.0251 9.0 675 0.5045 0.9033
0.0276 10.0 750 0.7184 0.875
0.0071 11.0 825 0.5704 0.89
0.0105 12.0 900 0.5523 0.9067
0.0005 13.0 975 0.5683 0.9033
0.0002 14.0 1050 0.5274 0.9033
0.0001 15.0 1125 0.5432 0.895
0.0001 16.0 1200 0.5742 0.8983
0.0001 17.0 1275 0.5512 0.9067
0.0071 18.0 1350 0.5548 0.9033
0.0043 19.0 1425 0.5622 0.9083
0.0063 20.0 1500 0.5939 0.9033
0.0 21.0 1575 0.5379 0.9133
0.0 22.0 1650 0.5428 0.91
0.0037 23.0 1725 0.5469 0.9067
0.0 24.0 1800 0.5517 0.9083
0.0 25.0 1875 0.5493 0.9083
0.0032 26.0 1950 0.5544 0.915
0.0 27.0 2025 0.5586 0.9117
0.0 28.0 2100 0.5623 0.9117
0.0 29.0 2175 0.5631 0.9117
0.0 30.0 2250 0.5628 0.91
0.0 31.0 2325 0.5710 0.9117
0.0 32.0 2400 0.5769 0.91
0.0 33.0 2475 0.5763 0.91
0.0048 34.0 2550 0.5811 0.9117
0.0073 35.0 2625 0.5738 0.9117
0.0031 36.0 2700 0.5751 0.91
0.0023 37.0 2775 0.5897 0.9133
0.0 38.0 2850 0.5810 0.91
0.0 39.0 2925 0.5835 0.91
0.0 40.0 3000 0.5848 0.9083
0.0 41.0 3075 0.5898 0.91
0.0027 42.0 3150 0.5994 0.915
0.0028 43.0 3225 0.5922 0.91
0.0 44.0 3300 0.5948 0.91
0.0027 45.0 3375 0.5970 0.91
0.0025 46.0 3450 0.5958 0.9083
0.0051 47.0 3525 0.6023 0.9133
0.0 48.0 3600 0.5981 0.9083
0.0 49.0 3675 0.6006 0.91
0.0045 50.0 3750 0.5996 0.9083

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0