hkivancoral's picture
End of training
ae395c5
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_rms_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.870216306156406

smids_1x_deit_small_rms_00001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8494
  • Accuracy: 0.8702

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.391 1.0 75 0.3306 0.8569
0.2024 2.0 150 0.3078 0.8719
0.1659 3.0 225 0.3046 0.8636
0.1089 4.0 300 0.3233 0.8702
0.0832 5.0 375 0.4345 0.8552
0.0315 6.0 450 0.4227 0.8686
0.0247 7.0 525 0.5432 0.8652
0.0031 8.0 600 0.5857 0.8769
0.0058 9.0 675 0.5689 0.8619
0.0354 10.0 750 0.6368 0.8619
0.0193 11.0 825 0.5921 0.8752
0.0019 12.0 900 0.6514 0.8785
0.0447 13.0 975 0.6838 0.8686
0.0527 14.0 1050 0.6693 0.8735
0.0047 15.0 1125 0.6444 0.8735
0.0064 16.0 1200 0.7052 0.8719
0.0002 17.0 1275 0.7289 0.8636
0.0092 18.0 1350 0.7405 0.8669
0.0001 19.0 1425 0.7743 0.8619
0.0038 20.0 1500 0.7512 0.8686
0.0001 21.0 1575 0.8249 0.8602
0.0001 22.0 1650 0.7832 0.8686
0.0001 23.0 1725 0.8312 0.8636
0.0 24.0 1800 0.7877 0.8669
0.0 25.0 1875 0.7958 0.8719
0.0001 26.0 1950 0.7718 0.8752
0.0055 27.0 2025 0.7918 0.8686
0.0032 28.0 2100 0.8022 0.8735
0.0023 29.0 2175 0.8185 0.8735
0.0031 30.0 2250 0.8365 0.8735
0.0028 31.0 2325 0.7946 0.8686
0.0 32.0 2400 0.8222 0.8752
0.0 33.0 2475 0.7981 0.8719
0.0 34.0 2550 0.8313 0.8752
0.0084 35.0 2625 0.8895 0.8702
0.0 36.0 2700 0.8170 0.8686
0.0 37.0 2775 0.8344 0.8752
0.0 38.0 2850 0.8561 0.8735
0.0022 39.0 2925 0.8329 0.8702
0.0 40.0 3000 0.8473 0.8719
0.0026 41.0 3075 0.8354 0.8686
0.0 42.0 3150 0.8451 0.8735
0.0025 43.0 3225 0.8430 0.8735
0.0025 44.0 3300 0.8484 0.8719
0.0 45.0 3375 0.8461 0.8702
0.0 46.0 3450 0.8473 0.8735
0.0023 47.0 3525 0.8487 0.8719
0.0 48.0 3600 0.8492 0.8702
0.0022 49.0 3675 0.8491 0.8686
0.0022 50.0 3750 0.8494 0.8702

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0