hkivancoral's picture
End of training
16226f4
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_rms_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.905

smids_1x_deit_small_rms_00001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7182
  • Accuracy: 0.905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3259 1.0 75 0.3001 0.89
0.2426 2.0 150 0.3217 0.8717
0.1676 3.0 225 0.2596 0.9083
0.1287 4.0 300 0.2827 0.895
0.0316 5.0 375 0.3452 0.885
0.0237 6.0 450 0.3793 0.9017
0.0244 7.0 525 0.4128 0.8967
0.0233 8.0 600 0.4590 0.8883
0.0286 9.0 675 0.4790 0.8983
0.0295 10.0 750 0.4835 0.8917
0.0562 11.0 825 0.4705 0.9067
0.0087 12.0 900 0.5035 0.9033
0.0083 13.0 975 0.5418 0.9017
0.0001 14.0 1050 0.5563 0.9
0.0012 15.0 1125 0.5874 0.8983
0.0001 16.0 1200 0.5698 0.8967
0.0001 17.0 1275 0.5930 0.9033
0.0062 18.0 1350 0.5972 0.9017
0.0048 19.0 1425 0.5918 0.9033
0.0089 20.0 1500 0.6518 0.9017
0.0001 21.0 1575 0.7835 0.885
0.0001 22.0 1650 0.6700 0.9
0.0031 23.0 1725 0.6679 0.8983
0.0 24.0 1800 0.6364 0.9033
0.0001 25.0 1875 0.6464 0.8983
0.003 26.0 1950 0.6535 0.8967
0.0 27.0 2025 0.6525 0.8983
0.0 28.0 2100 0.6526 0.8983
0.0 29.0 2175 0.6663 0.895
0.0 30.0 2250 0.6645 0.8983
0.0 31.0 2325 0.6717 0.9
0.0 32.0 2400 0.6659 0.8983
0.0 33.0 2475 0.6774 0.9017
0.0051 34.0 2550 0.6726 0.905
0.0059 35.0 2625 0.7209 0.8933
0.0031 36.0 2700 0.6818 0.9067
0.0022 37.0 2775 0.6938 0.8967
0.0 38.0 2850 0.6968 0.8967
0.0 39.0 2925 0.7122 0.8983
0.0 40.0 3000 0.7008 0.8983
0.0 41.0 3075 0.7070 0.8983
0.0026 42.0 3150 0.7002 0.9
0.0025 43.0 3225 0.7107 0.9
0.0 44.0 3300 0.7106 0.9033
0.0025 45.0 3375 0.7116 0.905
0.0025 46.0 3450 0.7142 0.905
0.0047 47.0 3525 0.7163 0.9033
0.0 48.0 3600 0.7169 0.9033
0.0 49.0 3675 0.7178 0.9033
0.0045 50.0 3750 0.7182 0.905

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0