metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_small_sgd_0001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7054908485856906
smids_1x_deit_small_sgd_0001_fold2
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7825
- Accuracy: 0.7055
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0783 | 1.0 | 75 | 1.0542 | 0.4509 |
1.0523 | 2.0 | 150 | 1.0379 | 0.4892 |
1.0294 | 3.0 | 225 | 1.0237 | 0.5225 |
1.0365 | 4.0 | 300 | 1.0109 | 0.5391 |
1.0245 | 5.0 | 375 | 0.9996 | 0.5524 |
0.9804 | 6.0 | 450 | 0.9885 | 0.5674 |
1.0004 | 7.0 | 525 | 0.9780 | 0.5857 |
0.979 | 8.0 | 600 | 0.9674 | 0.5957 |
0.9543 | 9.0 | 675 | 0.9573 | 0.5973 |
0.9564 | 10.0 | 750 | 0.9477 | 0.6023 |
0.9543 | 11.0 | 825 | 0.9383 | 0.6190 |
0.9466 | 12.0 | 900 | 0.9293 | 0.6256 |
0.9322 | 13.0 | 975 | 0.9204 | 0.6273 |
0.8987 | 14.0 | 1050 | 0.9121 | 0.6356 |
0.9075 | 15.0 | 1125 | 0.9040 | 0.6356 |
0.9086 | 16.0 | 1200 | 0.8961 | 0.6456 |
0.8923 | 17.0 | 1275 | 0.8885 | 0.6473 |
0.8806 | 18.0 | 1350 | 0.8814 | 0.6506 |
0.8958 | 19.0 | 1425 | 0.8744 | 0.6522 |
0.8609 | 20.0 | 1500 | 0.8676 | 0.6572 |
0.9085 | 21.0 | 1575 | 0.8614 | 0.6656 |
0.8274 | 22.0 | 1650 | 0.8554 | 0.6689 |
0.8481 | 23.0 | 1725 | 0.8495 | 0.6739 |
0.8248 | 24.0 | 1800 | 0.8441 | 0.6739 |
0.8342 | 25.0 | 1875 | 0.8389 | 0.6722 |
0.8564 | 26.0 | 1950 | 0.8341 | 0.6805 |
0.8458 | 27.0 | 2025 | 0.8294 | 0.6822 |
0.7955 | 28.0 | 2100 | 0.8250 | 0.6839 |
0.8045 | 29.0 | 2175 | 0.8208 | 0.6839 |
0.8063 | 30.0 | 2250 | 0.8168 | 0.6822 |
0.8139 | 31.0 | 2325 | 0.8131 | 0.6855 |
0.8204 | 32.0 | 2400 | 0.8097 | 0.6855 |
0.7688 | 33.0 | 2475 | 0.8065 | 0.6889 |
0.8146 | 34.0 | 2550 | 0.8035 | 0.6938 |
0.7717 | 35.0 | 2625 | 0.8006 | 0.6938 |
0.7969 | 36.0 | 2700 | 0.7981 | 0.6955 |
0.805 | 37.0 | 2775 | 0.7957 | 0.6955 |
0.8385 | 38.0 | 2850 | 0.7936 | 0.6988 |
0.7682 | 39.0 | 2925 | 0.7916 | 0.6988 |
0.7759 | 40.0 | 3000 | 0.7898 | 0.7005 |
0.8019 | 41.0 | 3075 | 0.7883 | 0.7005 |
0.7801 | 42.0 | 3150 | 0.7869 | 0.7005 |
0.7773 | 43.0 | 3225 | 0.7857 | 0.6988 |
0.788 | 44.0 | 3300 | 0.7847 | 0.7005 |
0.7811 | 45.0 | 3375 | 0.7839 | 0.7022 |
0.7761 | 46.0 | 3450 | 0.7833 | 0.7022 |
0.7855 | 47.0 | 3525 | 0.7828 | 0.7038 |
0.7857 | 48.0 | 3600 | 0.7826 | 0.7055 |
0.7597 | 49.0 | 3675 | 0.7825 | 0.7055 |
0.7828 | 50.0 | 3750 | 0.7825 | 0.7055 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0