hkivancoral's picture
End of training
e16b59f
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_sgd_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.685

smids_1x_deit_small_sgd_0001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7697
  • Accuracy: 0.685

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0786 1.0 75 1.0493 0.4483
1.0628 2.0 150 1.0330 0.4767
1.0285 3.0 225 1.0186 0.5233
0.9944 4.0 300 1.0062 0.53
1.0232 5.0 375 0.9947 0.5517
0.9927 6.0 450 0.9839 0.56
0.9942 7.0 525 0.9736 0.5767
0.9843 8.0 600 0.9634 0.595
0.9686 9.0 675 0.9535 0.6033
0.9669 10.0 750 0.9439 0.6067
0.9496 11.0 825 0.9345 0.6117
0.9424 12.0 900 0.9255 0.615
0.9379 13.0 975 0.9166 0.615
0.9246 14.0 1050 0.9079 0.6217
0.9261 15.0 1125 0.8998 0.63
0.8974 16.0 1200 0.8916 0.6333
0.9045 17.0 1275 0.8836 0.6367
0.8617 18.0 1350 0.8760 0.6417
0.885 19.0 1425 0.8688 0.6433
0.8736 20.0 1500 0.8617 0.6467
0.8843 21.0 1575 0.8551 0.6433
0.8472 22.0 1650 0.8488 0.6417
0.8796 23.0 1725 0.8428 0.6417
0.8784 24.0 1800 0.8370 0.6467
0.8408 25.0 1875 0.8316 0.65
0.8377 26.0 1950 0.8263 0.655
0.8101 27.0 2025 0.8213 0.6583
0.8334 28.0 2100 0.8166 0.66
0.8187 29.0 2175 0.8122 0.6567
0.8337 30.0 2250 0.8080 0.6583
0.8018 31.0 2325 0.8041 0.665
0.8384 32.0 2400 0.8003 0.67
0.813 33.0 2475 0.7968 0.6767
0.7997 34.0 2550 0.7936 0.6817
0.7882 35.0 2625 0.7905 0.6833
0.7651 36.0 2700 0.7878 0.6817
0.7706 37.0 2775 0.7852 0.6817
0.7916 38.0 2850 0.7828 0.6783
0.8116 39.0 2925 0.7807 0.6783
0.7662 40.0 3000 0.7787 0.6783
0.7857 41.0 3075 0.7769 0.6817
0.7862 42.0 3150 0.7753 0.6817
0.8172 43.0 3225 0.7740 0.685
0.7812 44.0 3300 0.7728 0.6867
0.803 45.0 3375 0.7718 0.685
0.7949 46.0 3450 0.7710 0.685
0.779 47.0 3525 0.7704 0.685
0.7941 48.0 3600 0.7700 0.685
0.7892 49.0 3675 0.7698 0.685
0.7766 50.0 3750 0.7697 0.685

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0