hkivancoral's picture
End of training
4b1118c
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_sgd_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6783333333333333

smids_1x_deit_small_sgd_0001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7968
  • Accuracy: 0.6783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0626 1.0 75 1.0608 0.4483
1.0568 2.0 150 1.0464 0.4867
1.0365 3.0 225 1.0338 0.505
1.0078 4.0 300 1.0223 0.5333
0.9982 5.0 375 1.0117 0.5367
0.9993 6.0 450 1.0016 0.5483
0.9996 7.0 525 0.9918 0.5533
0.9666 8.0 600 0.9822 0.5583
0.9644 9.0 675 0.9728 0.5617
0.9545 10.0 750 0.9636 0.575
0.9539 11.0 825 0.9547 0.5817
0.9365 12.0 900 0.9461 0.5867
0.9407 13.0 975 0.9377 0.5983
0.9254 14.0 1050 0.9295 0.6067
0.8947 15.0 1125 0.9216 0.61
0.8953 16.0 1200 0.9139 0.615
0.8981 17.0 1275 0.9064 0.6217
0.8879 18.0 1350 0.8991 0.625
0.8717 19.0 1425 0.8924 0.625
0.894 20.0 1500 0.8856 0.6233
0.8798 21.0 1575 0.8793 0.6267
0.8697 22.0 1650 0.8733 0.6283
0.8459 23.0 1725 0.8674 0.6283
0.8379 24.0 1800 0.8619 0.6317
0.8435 25.0 1875 0.8567 0.63
0.8249 26.0 1950 0.8516 0.6367
0.8188 27.0 2025 0.8468 0.6433
0.8401 28.0 2100 0.8423 0.645
0.8328 29.0 2175 0.8381 0.6483
0.8111 30.0 2250 0.8341 0.66
0.8031 31.0 2325 0.8302 0.6633
0.8167 32.0 2400 0.8267 0.665
0.8141 33.0 2475 0.8233 0.6667
0.7864 34.0 2550 0.8201 0.6717
0.7796 35.0 2625 0.8172 0.6717
0.767 36.0 2700 0.8145 0.675
0.759 37.0 2775 0.8119 0.675
0.7758 38.0 2850 0.8096 0.675
0.7909 39.0 2925 0.8075 0.675
0.7767 40.0 3000 0.8055 0.6767
0.7913 41.0 3075 0.8038 0.6767
0.7892 42.0 3150 0.8023 0.6783
0.787 43.0 3225 0.8010 0.6783
0.7743 44.0 3300 0.7998 0.6783
0.7658 45.0 3375 0.7988 0.6783
0.8086 46.0 3450 0.7980 0.6817
0.7797 47.0 3525 0.7974 0.68
0.7878 48.0 3600 0.7970 0.6783
0.77 49.0 3675 0.7968 0.6783
0.742 50.0 3750 0.7968 0.6783

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0