hkivancoral's picture
End of training
9c5003c
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_sgd_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8452579034941764

smids_1x_deit_small_sgd_001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3804
  • Accuracy: 0.8453

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9829 1.0 75 0.9415 0.6140
0.8706 2.0 150 0.8332 0.6855
0.7459 3.0 225 0.7472 0.7105
0.699 4.0 300 0.6837 0.7404
0.6391 5.0 375 0.6363 0.7587
0.5631 6.0 450 0.5989 0.7687
0.5887 7.0 525 0.5694 0.7820
0.5519 8.0 600 0.5464 0.7887
0.4995 9.0 675 0.5237 0.7970
0.5219 10.0 750 0.5075 0.8053
0.4633 11.0 825 0.4946 0.8070
0.4238 12.0 900 0.4804 0.8220
0.4323 13.0 975 0.4699 0.8253
0.358 14.0 1050 0.4601 0.8253
0.3922 15.0 1125 0.4517 0.8270
0.412 16.0 1200 0.4446 0.8253
0.3525 17.0 1275 0.4384 0.8236
0.3851 18.0 1350 0.4333 0.8253
0.4196 19.0 1425 0.4291 0.8353
0.3588 20.0 1500 0.4237 0.8286
0.4139 21.0 1575 0.4192 0.8353
0.3218 22.0 1650 0.4155 0.8369
0.3303 23.0 1725 0.4117 0.8419
0.3481 24.0 1800 0.4077 0.8419
0.3241 25.0 1875 0.4056 0.8403
0.3326 26.0 1950 0.4042 0.8453
0.3492 27.0 2025 0.4005 0.8453
0.2987 28.0 2100 0.3985 0.8419
0.3361 29.0 2175 0.3960 0.8453
0.2986 30.0 2250 0.3933 0.8469
0.2629 31.0 2325 0.3933 0.8469
0.3171 32.0 2400 0.3920 0.8453
0.2746 33.0 2475 0.3904 0.8453
0.2943 34.0 2550 0.3897 0.8453
0.2828 35.0 2625 0.3874 0.8453
0.2865 36.0 2700 0.3865 0.8453
0.2715 37.0 2775 0.3856 0.8453
0.3146 38.0 2850 0.3843 0.8453
0.2703 39.0 2925 0.3840 0.8453
0.2829 40.0 3000 0.3831 0.8453
0.2957 41.0 3075 0.3831 0.8453
0.29 42.0 3150 0.3825 0.8469
0.2671 43.0 3225 0.3820 0.8469
0.262 44.0 3300 0.3814 0.8453
0.2814 45.0 3375 0.3812 0.8436
0.272 46.0 3450 0.3810 0.8436
0.2705 47.0 3525 0.3806 0.8453
0.2571 48.0 3600 0.3805 0.8453
0.267 49.0 3675 0.3804 0.8453
0.2797 50.0 3750 0.3804 0.8453

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0