hkivancoral's picture
End of training
8e0f3be
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_sgd_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8716666666666667

smids_1x_deit_small_sgd_001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3620
  • Accuracy: 0.8717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9897 1.0 75 0.9617 0.5517
0.8723 2.0 150 0.8626 0.625
0.7649 3.0 225 0.7773 0.7033
0.6947 4.0 300 0.7095 0.7417
0.6117 5.0 375 0.6569 0.7517
0.5694 6.0 450 0.6132 0.7833
0.5545 7.0 525 0.5789 0.79
0.4978 8.0 600 0.5508 0.7967
0.5086 9.0 675 0.5269 0.8017
0.4854 10.0 750 0.5107 0.8033
0.442 11.0 825 0.4925 0.815
0.4253 12.0 900 0.4789 0.8217
0.4589 13.0 975 0.4669 0.8217
0.402 14.0 1050 0.4553 0.82
0.3349 15.0 1125 0.4468 0.8283
0.3869 16.0 1200 0.4398 0.8333
0.3789 17.0 1275 0.4312 0.8367
0.3564 18.0 1350 0.4255 0.84
0.3321 19.0 1425 0.4198 0.84
0.3788 20.0 1500 0.4135 0.8383
0.3599 21.0 1575 0.4108 0.8417
0.3259 22.0 1650 0.4045 0.8417
0.3384 23.0 1725 0.4010 0.8433
0.3143 24.0 1800 0.3966 0.8433
0.3495 25.0 1875 0.3938 0.8483
0.3642 26.0 1950 0.3902 0.8517
0.2826 27.0 2025 0.3879 0.855
0.3052 28.0 2100 0.3848 0.8533
0.3344 29.0 2175 0.3828 0.855
0.3229 30.0 2250 0.3809 0.8533
0.3173 31.0 2325 0.3785 0.8567
0.3012 32.0 2400 0.3761 0.8567
0.2954 33.0 2475 0.3749 0.8617
0.2924 34.0 2550 0.3731 0.8633
0.3077 35.0 2625 0.3719 0.8667
0.3047 36.0 2700 0.3705 0.8667
0.2425 37.0 2775 0.3691 0.8683
0.3384 38.0 2850 0.3680 0.8683
0.2795 39.0 2925 0.3666 0.8683
0.2754 40.0 3000 0.3660 0.87
0.2793 41.0 3075 0.3650 0.8683
0.288 42.0 3150 0.3645 0.87
0.3153 43.0 3225 0.3639 0.87
0.2599 44.0 3300 0.3636 0.8717
0.3229 45.0 3375 0.3630 0.8717
0.297 46.0 3450 0.3626 0.8717
0.2632 47.0 3525 0.3624 0.8717
0.3026 48.0 3600 0.3623 0.8717
0.3009 49.0 3675 0.3621 0.8717
0.2576 50.0 3750 0.3620 0.8717

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0